Advertisement

On Presburger Arithmetic Extended with Modulo Counting Quantifiers

  • Peter Habermehl
  • Dietrich Kuske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9034)

Abstract

We consider Presburger arithmetic (PA) extended with modulo counting quantifiers. We show that its complexity is essentially the same as that of PA, i.e., we give a doubly exponential space bound. This is done by giving and analysing a quantifier elimination procedure similar to Reddy and Loveland’s procedure for PA. We also show that the complexity of the automata-based decision procedure for PA with modulo counting quantifiers has the same triple-exponential time complexity as the one for PA when using least significant bit first encoding.

Keywords

Decision Procedure Free Variable Atomic Formula Elimination Procedure Extended Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Apelt, H.: Axiomatische Untersuchungen über einige mit der Presburgerschen Arithmetik verwandten Systeme. Z. Math. Logik Grundlagen Math. 12, 131–168 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Berman, L.: The complexity of logical theories. Theor. Comput. Sci. 11, 71–77 (1980)CrossRefzbMATHGoogle Scholar
  3. 3.
    Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata and interpretations. Theory of Computing Systems 37(6), 641–674 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata. Mathematical Systems Theory 3(2), 186–192 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Durand-Gasselin, A., Habermehl, P.: Ehrenfeucht-Fraïssé goes elementarily automatic for structures of bounded degree. In: STACS 2012, pp. 242–253. Dagstuhl Publishing (2012)Google Scholar
  6. 6.
    Durand-Gasselin, A., Habermehl, P.: On the use of non-deterministic automata for Presburger arithmetic. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 373–387. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Ferrante, J., Rackoff, C.W.: The computational complexity of logical theories.. Lecture Notes in Mathematics, vol. 718, 243 p. Springer, Heidelberg (1979)Google Scholar
  8. 8.
    Grädel, E.: Subclasses of Presburger arithmetic and the polynomial-time hierarchy. Theor. Comput. Sci. 56, 289–301 (1988)CrossRefzbMATHGoogle Scholar
  9. 9.
    Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In: CSL-LICS 2014, paper no. 47, 10 pages. ACM (2014)Google Scholar
  10. 10.
    Hodgson, B.R.: On direct products of automaton decidable theories. Theoretical Computer Science 19, 331–335 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Khoussainov, B., Rubin, S., Stephan, F.: Definability and regularity in automatic structures. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 440–451. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Klaedtke, F.: Bounds on the Automata Size for Presburger Arithmetic. ACM Trans. Comput. Logic 9(2), 1–34 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kuske, D., Lohrey, M.: Automatic structures of bounded degree revisited. Journal of Symbolic Logic 76(4), 1352–1380 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Leroux, J.: Structural Presburger Digit Vector Automata. Theoretical Computer Science 409(3), 549–556 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Oppen, D.C.: A \(2^{2^{2^{pn}}}\) Upper Bound on the Complexity of Presburger Arithmetic. J. Comput. Syst. Sci. 16(3), 323–332 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Sprawozdanie z 1 Kongresu Matematyków Krajow Slowiańskich, Ksiaznica Atlas, pp. 92–101. Warzaw (1930)Google Scholar
  18. 18.
    Reddy, C.R., Loveland, D.W.: Presburger Arithmetic with Bounded Quantifier Alternation. In: ACM Symposium on Theory of Computing, pp. 320–325 (1978)Google Scholar
  19. 19.
    Rubin, S.: Automata presenting structures: A survey of the finite string case. Bulletin of Symbolic Logic 14, 169–209 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Schöning, U.: Complexity of Presburger arithmetic with fixed quantifier dimension. Theory Comput. Syst. 30(4), 423–428 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log. 6(3), 634–671 (2005)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Semenov, A.L.: Presburgerness of predicates regular in two number systems. Sib. Math. J. 18, 289–300 (1977)CrossRefzbMATHGoogle Scholar
  23. 23.
    Von Zur Gathen, J., Sieveking, M.: A bound on solutions of linear integer equalities and inequalities. Proc. AMS 72, 155–158 (1978)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Peter Habermehl
    • 1
  • Dietrich Kuske
    • 2
  1. 1.LIAFAUniversity Paris DiderotParisFrance
  2. 2.TU IlmenauIlmenauGermany

Personalised recommendations