Advertisement

Minimisation of Multiplicity Tree Automata

  • Stefan Kiefer
  • Ines Marusic
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9034)

Abstract

We consider the problem of minimising the number of states in a multiplicity tree automaton over the field of rational numbers. We give a minimisation algorithm that runs in polynomial time assuming unit-cost arithmetic. We also show that a polynomial bound in the standard Turing model would require a breakthrough in the complexity of polynomial identity testing by proving that the latter problem is logspace equivalent to the decision version of minimisation. The developed techniques also improve the state of the art in multiplicity word automata: we give an NC algorithm for minimising multiplicity word automata. Finally, we consider the minimal consistency problem: does there exist an automaton with n states that is consistent with a given finite sample of weight-labelled words or trees? We show that this decision problem is complete for the existential theory of the rationals, both for words and for trees of a fixed alphabet rank.

References

  1. 1.
    Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoretical Computer Science 18(2), 115–148 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer (1997)Google Scholar
  3. 3.
    Borchardt, B.: A pumping lemma and decidability problems for recognizable tree series. Acta Cybern. 16(4), 509–544 (2004)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bozapalidis, S.: Effective construction of the syntactic algebra of a recognizable series on trees. Acta Inf. 28(4), 351–363 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bozapalidis, S., Alexandrakis, A.: Représentations matricielles des séries d’arbre reconnaissables. RAIRO-Theoretical Informatics and Applications-Informatique Théorique et Applications 23(4), 449–459 (1989)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series. Theoretical Computer Science 27(1), 211–215 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brainerd, W.S.: The minimalization of tree automata. Information and Control 13(5), 484–491 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceedings of STOC 1988, pp. 460–467. ACM (1988)Google Scholar
  9. 9.
    Carlyle, J.W., Paz, A.: Realizations by stochastic finite automata. Journal of Computer and System Sciences 5(1), 26–40 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Carme, J., Gilleron, R., Lemay, A., Terlutte, A., Tommasi, M.: Residual finite tree automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 171–182. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Carrasco, R.C., Daciuk, J., Forcada, M.L.: An implementation of deterministic tree automata minimization. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 122–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems. Inf. Comput. 97(1), 1–22 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Information and Control 64(1-3), 2–22 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Cortes, C., Mohri, M., Rastogi, A.: On the computation of some standard distances between probabilistic automata. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 137–149. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Csanky, L.: Fast parallel matrix inversion algorithms. SIAM J. Comput. 5(4), 618–623 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Fliess, M.: Matrices de Hankel. Journal de Mathématiques Pures et Appliquées 53, 197–222 (1974)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 268–280. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Ibarra, O.H., Moran, S., Rosier, L.E.: A note on the parallel complexity of computing the rank of order n matrices. Information Processing Letters 11(4/5), 162 (1980)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22(6), 1117–1141 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kiefer, S., Marusic, I., Worrell, J.: Minimisation of multiplicity tree automata. Technical report, arxiv.org (2014), http://arxiv.org/abs/1410.535
  22. 22.
    Kiefer, S., Murawski, A., Ouaknine, J., Wachter, B., Worrell, J.: On the complexity of equivalence and minimisation for ℚ-weighted automata. Logical Methods in Computer Science 9(1) (2013)Google Scholar
  23. 23.
    Maletti, A.: Minimizing deterministic weighted tree automata. Inf. Comput. 207(11), 1284–1299 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Marusic, I., Worrell, J.: Complexity of equivalence and learning for multiplicity tree automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 414–425. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4(2-3), 245–270 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3), 424–437 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Tzeng, W.-G.: A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM J. Comput. 21(2), 216–227 (1992)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stefan Kiefer
    • 1
  • Ines Marusic
    • 1
  • James Worrell
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations