Advertisement

Compositional Metric Reasoning with Probabilistic Process Calculi

  • Daniel Gebler
  • Kim Guldstrand Larsen
  • Simone Tini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9034)

Abstract

We study which standard operators of probabilistic process calculi allow for compositional reasoning with respect to bisimulation metric semantics. We argue that uniform continuity (generalizing the earlier proposed property of non-expansiveness) captures the essential nature of compositional reasoning and allows now also to reason compositionally about recursive processes. We characterize the distance between probabilistic processes composed by standard process algebra operators. Combining these results, we demonstrate how compositional reasoning about systems specified by continuous process algebra operators allows for metric assume-guarantee like performance validation.

Keywords

Operational Semantic Parallel Composition Compositionality Property Process Algebra Probabilistic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Computing Behavioral Distances, Compositionally. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 74–85. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bartels, F.: On Generalised Coinduction and Probabilistic Specification Formats. Ph.D. thesis, VU University Amsterdam (2004)Google Scholar
  3. 3.
    van Breugel, F., Worrell, J.: A Behavioural Pseudometric for Probabilistic Transition Systems. TCS 331(1), 115–142 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    D’Argenio, P.R., Lee, M.D.: Probabilistic Transition System Specification: Congruence and Full Abstraction of Bisimulation. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 452–466. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    De Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: Proc. LICS 2007, pp. 99–108. IEEE (2007)Google Scholar
  6. 6.
    De Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the Future in Systems Theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for Action-labelled Quantitative Transition Systems. ENTCS 153(2), 79–96 (2006)Google Scholar
  8. 8.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for Labelled Markov Processes. TCS 318(3), 323–354 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fahrenberg, U., Legay, A.: The quantitative linear-time-branching-time spectrum. TCS 538, 54–69 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fokkink, W.: Modelling Distributed Systems. Springer (2007)Google Scholar
  11. 11.
    Gebler, D., Tini, S.: Fixed-point Characterization of Compositionality Properties of Probabilistic Processes Combinators. In: Proc. EXPRESS/SOS 2014. EPTCS, vol. 160, pp. 63–78 (2014)Google Scholar
  12. 12.
    Lee, M.D., Gebler, D., D’Argenio, P.R.: Tree Rules in Probabilistic Transition System Specifications with Negative and Quantitative Premises. In: Proc. EXPRESS/SOS 2012. EPTCS, vol. 89, pp. 115–130 (2012)Google Scholar
  13. 13.
    Mio, M.: Upper-Expectation Bisimilarity and Łukasiewicz μ-Calculus. In: Muscholl, A. (ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 335–350. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Mio, M., Simpson, A.: A Proof System for Compositional Verification of Probabilistic Concurrent Processes. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 161–176. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis. MIT (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daniel Gebler
    • 1
  • Kim Guldstrand Larsen
    • 2
  • Simone Tini
    • 3
  1. 1.VU University Amsterdam (NL)AmsterdamThe Netherlands
  2. 2.Aalborg University (DK)CopenhagenDenmark
  3. 3.University of Insubria (IT)VareseItaly

Personalised recommendations