Advertisement

Knowledge = Observation + Memory + Computation

  • Blaise Genest
  • Doron Peled
  • Sven Schewe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9034)

Abstract

We compare three notions of knowledge in concurrent system: memoryless knowledge, knowledge of perfect recall, and causal knowledge. Memoryless knowledge is based only on the current state of a process, knowledge of perfect recall can take into account the local history of a process, and causal knowledge depends on the causal past of a process, which comprises the information a process can obtain when all processes exchange the information they have when performing joint transitions. We compare these notions in terms of knowledge strength, number of bits required to store this information, and the complexity of checking if a given process has a given knowledge. We show that all three notions of knowledge can be implemented using finite memory. Causal knowledge proves to be strictly more powerful than knowledge with perfect recall, which in turn proves to be strictly more powerful than memoryless knowledge. We show that keeping track of causal knowledge is cheaper than keeping track of knowledge of perfect recall.

Keywords

Partial Order Transition System Global State Critical Section Reachable State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority scheduling of distributed systems based on model checking. Formal Methods in System Design 39(3), 229–245 (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Diekert, V., Rozenberg, G.: In particular. In: Diekert, V., Muscholl, A. (eds.) The Book of Traces, ch. 8, World Scientific, Singapore (1995)Google Scholar
  3. 3.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  4. 4.
    Gastin, P., Lerman, B., Zeitoun, M.: Distributed Games with Causal Memory Are Decidable for Series-Parallel Systems. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 275–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Optimal zielonka-type construction of deterministic asynchronous automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 52–63. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Asynchronous Games over Tree Architectures. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 275–286. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Genest, B., Muscholl, A.: Constructing Exponential-size Deterministic Zielonka Automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 565–576. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Graf, S., Peled, D., Quinton, S.: Monitoring Distributed Systems Using Knowledge. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 183–197. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Krishnan, R., Venkatesh, S.: Optimizing the gossip automaton, Report TCS-94-3, School of Mathematics, SPIC Science Foundation, Madras, India (1994)Google Scholar
  10. 10.
    Mazurkiewicz, A.: Concurrent program schemes and their interpretation. Technical report, DAIMI Report PB-78, Aarhus University (1977)Google Scholar
  11. 11.
    van der Meyden, R.: Common Knowledge and Update in Finite Environment. Information and Computation 140(2), 115–157 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    van der Meyden, R., Shilov, N.V.: Model Checking Knowledge and Time in Systems with Perfect Recall. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 432–445. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Meyer, A.R., Stockmeyer, L.J.: The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space. In: Proc. of STOC 1973, pp. 1–9 (1973)Google Scholar
  14. 14.
    Mukund, M., Sohoni, M.: Keeping Track of the Latest Gossip in a Distributed System. Distr. Computing 10(3), 137–148 (1997)CrossRefGoogle Scholar
  15. 15.
    Madhusudan, P., Thiagarajan, P.S., Yang, S.: The MSO Theory of Connectedly Communicating Processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 201–212. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Ricker, S.L., Rudie, K.: Know means no: Incorporating knowledge into discrete-event control systems. IEEE Trans. Automat. Contr. 45(9), 1656–1668 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. - Informatique Théorique et Applications 21, 99–135 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Blaise Genest
    • 1
  • Doron Peled
    • 2
  • Sven Schewe
    • 3
  1. 1.CNRS, IRISARennesFrance
  2. 2.Bar Ilan UniversityRamat GanIsrael
  3. 3.University of LiverpoolLiverpoolUK

Personalised recommendations