Advertisement

On the Total Variation Distance of Semi-Markov Chains

  • Giorgio BacciEmail author
  • Giovanni Bacci
  • Kim Guldstrand Larsen
  • Radu Mardare
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9034)

Abstract

Semi-Markov chains (SMCs) are continuous-time probabilistic transition systems where the residence time on states is governed by generic distributions on the positive real line.

This paper shows the tight relation between the total variation distance on SMCs and their model checking problem over linear real-time specifications. Specifically, we prove that the total variation between two SMCs coincides with the maximal difference w.r.t. the likelihood of satisfying arbitrary MTL formulas or ω-languages recognized by timed automata.

Computing this distance (i.e., solving its threshold problem) is NP-hard and its decidability is an open problem. Nevertheless, we propose an algorithm for approximating it with arbitrary precision.

Keywords

Model Check Measurable Space Coupling Structure Arbitrary Precision Total Variation Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Dill, D.: Automata for Modeling real-time Systems. In: Paterson, M. S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. Information and Computation 104(1), 35–77 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: A Really Temporal Logic. Journal of the ACM 41(1), 181–204 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-Fly Exact Computation of Bisimilarity Distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 1–15. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On the Total Variation Distance of Semi-Markov Chains. Technical report, AAU, DK (2014), http://people.cs.aau.dk/~grbacci/Papers/tvsmc_ext.pdf
  6. 6.
    Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  7. 7.
    Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-Bounded Verification of CTMCs against Real-Time Specifications. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 26–42. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Model checking of continuous-time markov chains against timed automata specifications. Logical Methods in Computer Science 7(1) (2011)Google Scholar
  9. 9.
    Chen, T., Kiefer, S.: On the Total Variation Distance of Labelled Markov Chains. In: Proc. of CSL-LICS 2014, p. 33:1–33:10. ACM, New York (2014)Google Scholar
  10. 10.
    de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quantitative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game Relations and Metrics. In: LICS, pp. 99–108 (July 2007)Google Scholar
  12. 12.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theoretical Compututer Science 318(3), 323–354 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lindvall, T.: Lectures on the Coupling Method. Wiley Series in Probability and Mathematical Statistics. John Wiley, New York (1992)zbMATHGoogle Scholar
  14. 14.
    Lyngsø, R.B., Pedersen, C.N.: The consensus string problem and the complexity of comparing hidden Markov models. Journal of Computer and System Sciences 65(3), 545–569 (2002), Special Issue on Computational Biology 2002Google Scholar
  15. 15.
    Mio, M.: Upper-Expectation Bisimilarity and Łukasiewicz μ-Calculus. In: Muscholl, A. (ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 335–350. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal Logic over finite words. Logical Methods in Computer Science 3(8) (2007)Google Scholar
  17. 17.
    Sharma, A., Katoen, J.-P.: Weighted Lumpability on Markov Chains. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 322–339. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theoretical Computer Science 360(3), 373–385 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Giorgio Bacci
    • 1
    Email author
  • Giovanni Bacci
    • 1
  • Kim Guldstrand Larsen
    • 1
  • Radu Mardare
    • 1
  1. 1.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations