An Institution for Simple UML State Machines

  • Alexander Knapp
  • Till Mossakowski
  • Markus Roggenbach
  • Martin Glauer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9033)

Abstract

We present an institution for UML state machines without hierarchical states. The interaction with UML class diagrams is handled via institutions for guards and actions, which provide dynamic components of states (such as valuations of attributes) but abstract away from details of class diagrams. We also study a notion of interleaving product, which captures the interaction of several state machines. The interleaving product construction is the basis for a semantics of composite structure diagrams, which can be used to specify the interaction of state machines. This work is part of a larger effort to build a framework for formal software development with UML, based on a heterogeneous approach using institutions.

Keywords

UML state machines interleaving product institutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Object Management Group: Unified Modeling Language. Standard formal/2011-08-06, OMG (2011)Google Scholar
  2. 2.
    Knapp, A., Mossakowski, T., Roggenbach, M.: Towards an Institutional Framework for Heterogeneous Formal Development in UML - A Position Paper. In: De Nicola, R., Hennicker, R. (eds.) Wirsing Festschrift. LNCS, vol. 8950, pp. 215–230. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. J. ACM 39, 95–146 (1992)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Große-Rhode, M.: Semantic Integration of Heterogeneous Software Specifications. Monographs in Theoretical Computer Science. Springer (2004)Google Scholar
  5. 5.
    Roggenbach, M.: CSP-CASL: A New Integration of Process Algebra and Algebraic Specification. Theo. Comp. Sci. 354, 42–71 (2006)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Mossakowski, T., Roggenbach, M.: Structured CSP – A Process Algebra as an Institution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 92–110. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    O’Reilly, L., Mossakowski, T., Roggenbach, M.: Compositional Modelling and Reasoning in an Institution for Processes and Data. In: Mossakowski, T., Kreowski, H.-J. (eds.) WADT 2010. LNCS, vol. 7137, pp. 251–269. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Schattkowsky, T., Müller, W.: Transformation of UML State Machines for Direct Execution. In: VL/HCC 2005, pp. 117–124. IEEE (2005)Google Scholar
  9. 9.
    Fecher, H., Schönborn, J.: UML 2.0 State Machines: Complete Formal Semantics Via core state machine. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS and PDMC 2006. LNCS, vol. 4346, pp. 244–260. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Calegari, D., Szasz, N.: Institutionalising UML 2.0 State Machines. Innov. Syst. Softw. Eng. 7, 315–323 (2011)CrossRefGoogle Scholar
  11. 11.
    Object Management Group: Precise Semantics of UML Composite Structures. Beta Specification ptc/14-06-15, OMG (2014)Google Scholar
  12. 12.
    Dereziska, A., Szczykulski, M.: Interpretation Problems in Code Generation from UML State Machines — A Comparative Study. In: Kwater, T. (ed.) Computing in Science and Technology 2011: Monographs in Applied Informatics, pp. 36–50. Warsaw University (2012)Google Scholar
  13. 13.
    Lano, K. (ed.): UML 2 — Semantics and Applications. Wiley (2009)Google Scholar
  14. 14.
    Engels, G., Heckel, R., Küster, J.M.: The Consistency Workbench: A Tool for Consistency Management in UML-Based Development. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 356–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Mossakowski, T., Sannella, D., Tarlecki, A.: A Simple Refinement Language for Casl. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 162–185. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Codescu, M., Mossakowski, T., Sannella, D., Tarlecki, A.: Specification Refinements: Calculi, Tools, and Applications (2014) (submitted)Google Scholar
  17. 17.
    Borzyszkowski, T.: Logical Systems for Structured Specifications. Theor. Comput. Sci. 286, 197–245 (2002)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Mossakowski, T., Autexier, S., Hutter, D.: Development Graphs — Proof Management for Structured Specifications. J. Log. Alg. Program. 67, 114–145 (2006)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Diaconescu, R.: Grothendieck Institutions. Applied Cat. Struct. 10, 383–402 (2002)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexander Knapp
    • 1
  • Till Mossakowski
    • 2
  • Markus Roggenbach
    • 3
  • Martin Glauer
    • 2
  1. 1.Universität AugsburgAugsburgGermany
  2. 2.Otto-von-Guericke Universität MagdeburgMagdeburgGermany
  3. 3.Swansea UniversitySwanseaUK

Personalised recommendations