Advertisement

Automatic Static Cost Analysis for Parallel Programs

  • Jan Hoffmann
  • Zhong Shao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9032)

Abstract

Static analysis of the evaluation cost of programs is an extensively studied problem that has many important applications. However, most automatic methods for static cost analysis are limited to sequential evaluation while programs are increasingly evaluated on modern multicore and multiprocessor hardware. This article introduces the first automatic analysis for deriving bounds on the worst-case evaluation cost of parallel first-order functional programs. The analysis is performed by a novel type system for amortized resource analysis. The main innovation is a technique that separates the reasoning about sizes of data structures and evaluation cost within the same framework. The cost semantics of parallel programs is based on call-by-value evaluation and the standard cost measures work and depth. A soundness proof of the type system establishes the correctness of the derived cost bounds with respect to the cost semantics. The derived bounds are multivariate resource polynomials which depend on the sizes of the arguments of a function. Type inference can be reduced to linear programming and is fully automatic. A prototype implementation of the analysis system has been developed to experimentally evaluate the effectiveness of the approach. The experiments show that the analysis infers bounds for realistic example programs such as quick sort for lists of lists, matrix multiplication, and an implementation of sets with lists. The derived bounds are often asymptotically tight and the constant factors are close to the optimal ones.

Keywords

Functional Programming Static Analysis Resource Consumption Amortized Analysis 

References

  1. 1.
    Vasconcelos, P.: Space Cost Analysis Using Sized Types. PhD thesis, School of Computer Science, University of St Andrews (2008)Google Scholar
  2. 2.
    Danner, N., Paykin, J., Royer, J.S.: A Static Cost Analysis for a Higher-Order Language. In: 7th Workshop on Prog. Languages Meets Prog. Verification (PLPV 2013), pp. 25–34 (2013)Google Scholar
  3. 3.
    Hofmann, M., Jost, S.: Static Prediction of Heap Space Usage for First-Order Functional Programs. In: 30th ACM Symp. on Principles of Prog. Langs. (POPL 2003), pp. 185–197 (2003)Google Scholar
  4. 4.
    Simões, H.R., Vasconcelos, P.B., Florido, M., Jost, S., Hammond, K.: Automatic Amortised Analysis of Dynamic Memory Allocation for Lazy Functional Programs. In: 17th Int. Conf. on Funct. Prog. (ICFP 2012), pp. 165–176 (2012)Google Scholar
  5. 5.
    Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static Estimation of Program Computational Complexity. In: 36th ACM Symp. on Principles of Prog. Langs. (POPL 2009), pp. 127–139 (2009)Google Scholar
  6. 6.
    Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis. ACM Trans. Program. Lang. Syst. (2012)Google Scholar
  8. 8.
    Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating Runtime and Size Complexity Analysis of Integer Programs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 140–155. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Sinn, M., Zuleger, F., Veith, H.: A Simple and Scalable Approach to Bound Analysis and Amortized Complexity Analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 745–761. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Blelloch, G.E., Greiner, J.: A Provable Time and Space Efficient Implementation of NESL. In: 1st Int. Conf. on Funct. Prog. (ICFP 1996), pp. 213–225 (1996)Google Scholar
  11. 11.
    Blelloch, G.E., Harper, R.: Cache and I/O Efficent Functional Algorithms. In: 40th ACM Symp. on Principles Prog. Langs. (POPL 2013), pp. 39–50 (2013)Google Scholar
  12. 12.
    Harper, R.: Practical Foundations for Programming Languages. Cambridge University Press (2012)Google Scholar
  13. 13.
    Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis. In: 38th ACM Symp. on Principles of Prog. Langs. (POPL 2011) (2011)Google Scholar
  14. 14.
    Hoffmann, J., Aehlig, K., Hofmann, M.: Resource Aware ML. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 781–786. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Blelloch, G.E.: Nesl: A nested data-parallel language (version 3.1). Technical Report CMU-CS-95-170, CMU (1995)Google Scholar
  16. 16.
    Aehlig, K., Hofmann, M., Hoffmann, J.: RAML Web Site (2010-2014), http://raml.tcs.ifi.lmu.de
  17. 17.
    Hoffmann, J., Shao, Z.: Automatic Static Cost Analysis for Parallel Programs. Full Version (2014), http://cs.yale.edu/~hoffmann/papers/parallelcost2014.pdf
  18. 18.
    Charguéraud, A.: Pretty-Big-Step Semantics. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 41–60. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Potential. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Hoffmann, J., Shao, Z.: Type-Based Amortized Resource Analysis with Integers and Arrays. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 152–168. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  21. 21.
    Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polymorphic Recursion and Partial Big-Step Operational Semantics. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 172–187. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Jost, S., Hammond, K., Loidl, H.W., Hofmann, M.: Static Determination of Quantitative Resource Usage for Higher-Order Programs. In: 37th ACM Symp. on Principles of Prog. Langs. (POPL 2010), pp. 223–236 (2010)Google Scholar
  23. 23.
    Campbell, B.: Amortised Memory Analysis using the Depth of Data Structures. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 190–204. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Hofmann, M.O., Jost, S.: Type-Based Amortised Heap-Space Analysis. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Hofmann, M., Rodriguez, D.: Automatic Type Inference for Amortised Heap-Space Analysis. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 593–613. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Atkey, R.: Amortised Resource Analysis with Separation Logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 85–103. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Vasconcelos, P.B., Hammond, K.: Inferring Costs for Recursive, Polymorphic and Higher-Order Functional Programs. In: Trinder, P., Michaelson, G.J., Peña, R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 86–101. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Hughes, J., Pareto, L., Sabry, A.: Proving the Correctness of Reactive Systems Using Sized Types. In: 23th ACM Symp. on Principles of Prog. Langs. (POPL 1996), pp. 410–423 (1996)Google Scholar
  29. 29.
    Lago, U.D., Gaboardi, M.: Linear Dependent Types and Relative Completeness. In: 26th IEEE Symp. on Logic in Computer Science (LICS 2011), pp. 133–142 (2011)Google Scholar
  30. 30.
    Lago, U.D., Petit, B.: The Geometry of Types. In: 40th ACM Symp. on Principles Prog. Langs. (POPL 2013), pp. 167–178 (2013)Google Scholar
  31. 31.
    Crary, K., Weirich, S.: Resource Bound Certification. In: 27th ACM Symp. on Principles of Prog. Langs. (POPL 2000), pp. 184–198 (2000)Google Scholar
  32. 32.
    Danielsson, N.A.: Lightweight Semiformal Time Complexity Analysis for Purely Functional Data Structures. In: 35th ACM Symp. on Principles Prog. Langs. (POPL 2008), pp. 133–144 (2008)Google Scholar
  33. 33.
    Wegbreit, B.: Mechanical Program Analysis. Commun. ACM 18(9), 528–539 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Grobauer, B.: Cost Recurrences for DML Programs. In: 6th Int. Conf. on Funct. Prog. (ICFP 2001), pp. 253–264 (2001)Google Scholar
  36. 36.
    Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis of Concurrent OO Programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 238–254. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  37. 37.
    Zimmermann, W.: Automatic Worst Case Complexity Analysis of Parallel Programs. Technical Report TR-90-066, University of California, Berkeley (1990)Google Scholar
  38. 38.
    Trinder, P.W., Cole, M.I., Hammond, K., Loidl, H.W., Michaelson, G.: Resource Analyses for Parallel and Distributed Coordination. Concurrency and Computation: Practice and Experience 25(3), 309–348 (2013)CrossRefGoogle Scholar
  39. 39.
    Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound Analysis of Imperative Programs with the Size-change Abstraction. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 280–297. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jan Hoffmann
    • 1
  • Zhong Shao
    • 1
  1. 1.Yale UniversityNew HavenUSA

Personalised recommendations