Binding Structures as an Abstract Data Type

  • Wilmer RicciottiEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9032)


A long line of research has been dealing with the representation, in a formal tool such as an interactive theorem prover, of languages with binding structures (e.g. the lambda calculus). Several concrete encodings of binding have been proposed, including de Bruijn dummies, the locally nameless representation, and others. Each of these encodings has its strong and weak points, with no clear winner emerging. One common drawback to such techniques is that reasoning on them discloses too much information about what we could call “implementation details”: often, in a formal proof, an unbound index will appear out of nowhere, only to be substituted immediately after; such details are never seen in an informal proof. To hide this unnecessary complexity, we propose to represent binding structures by means of an abstract data type, equipped with high level operations allowing to manipulate terms with binding with a degree of abstraction comparable to that of informal proofs. We also prove that our abstract representation is sound by providing a de Bruijn model.


Typing Rule Inductive Type Induction Principle Lambda Calculus Typing Judgment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adams, R.: A Modular Hierarchy of Logical Frameworks. Ph.D. thesis, University of Manchester (2004)Google Scholar
  2. 2.
    Ahrens, B., Zsido, J.: Initial semantics for higher-order typed syntax in Coq. Journal of Formalized Reasoning 4(1) (2011),
  3. 3.
    Asperti, A., et al.: Formal metatheory of programming languages in the Matita interactive theorem prover. Journal of Automated Reasoning: Special Issue on the Poplmark Challenge 49(3), 427–451 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Aydemir, B., Weirich, S.: LNgen: Tool support for locally nameless representations. Tech. Rep. MS-CIS-10-24, University of Pennsylvania, Department of Computer and Information Science (2010)Google Scholar
  5. 5.
    Aydemir, B.E., et al.: Mechanized metatheory for the masses: The poplMark challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 50–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Berghofer, S., Urban, C.: Nominal inversion principles. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 71–85. Springer, Heidelberg (2008), CrossRefGoogle Scholar
  7. 7.
    Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. Journal of Functional Programming (1999)Google Scholar
  8. 8.
    Capretta, V., Felty, A.: Higher-order abstract syntax in type theory. In: Cooper, S.B., Geuvers, H., Pillay, A., Väänänen, J. (eds.) Logic Colloquium 2006. Lecture Notes in Logic, vol. 32, pp. 65–90. Cambridge University Press (2009)Google Scholar
  9. 9.
    Charguraud, A.: The locally nameless representation. Journal of Automated Reasoning 49(3), 363–408 (2012), CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ciaffaglione, A., Scagnetto, I.: A weak HOAS approach to the POPLmark challenge. In: Kesner, D., Viana, P. (eds.) Proceedings Seventh Workshop on Logical and Semantic Frameworks, with Applications, Rio de Janeiro, Brazil, September 29-30. Electronic Proceedings in Theoretical Computer Science, vol. 113, pp. 109–124. Open Publishing Association (2013)Google Scholar
  11. 11.
    Gordon, A.D., Melham, T.: Five axioms of alpha-conversion. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 173–190. Springer, Heidelberg (1996), CrossRefGoogle Scholar
  12. 12.
    Huffman, B., Urban, C.: A new foundation for nominal isabelle. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 35–50. Springer, Heidelberg (2010), CrossRefGoogle Scholar
  13. 13.
    McBride, C.: Dependently Typed Functional Programs and their Proofs. Ph.D. thesis, University of Edinburgh (1999)Google Scholar
  14. 14.
    McBride, C.: Elimination with a motive. In: Callaghan, P., et al. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 197–216. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. Journal of Automated Reasoning 23(3), 373–409 (1999), Scholar
  16. 16.
    de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae 34, 381–392 (1972)CrossRefGoogle Scholar
  17. 17.
    Pollack, R., Sato, M., Ricciotti, W.: A canonical locally named representation of binding. Journal of Automated Reasoning 49(2), 185–207 (2012), CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Polonowski, E.: Automatically generated infrastructure for de bruijn syntaxes. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 402–417. Springer, Heidelberg (2013), CrossRefGoogle Scholar
  19. 19.
    Popescu, A., Gunter, E.L.: Recursion principles for syntax with bindings and substitution. In: Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming. pp. 346–358. ICFP 2011 ACM, New York (2011),
  20. 20.
    Pottier, F.: An overview of Cαml. Electronic Notes in Theoretical Computer Science 148(2), 27–52 (2006), Proceedings of the ACM-SIGPLAN Workshop on ML (ML 2005) ACM-SIGPLAN Workshop on ML 2005 (2005)Google Scholar
  21. 21.
    Pouillard, N.: Nameless, painless. In: Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP 2011, pp. 320–332. ACM, New York (2011), Google Scholar
  22. 22.
    Ricciotti, W.: Theoretical and Implementation Aspects in the Mechanization of the Metatheory of Programming Languages. Ph.D. thesis, Università di Bologna (2011)Google Scholar
  23. 23.
    Sato, M., Pollack, R.: External and internal syntax of the lambda-calculus. J. Symb. Comput. 45(5), 598–616 (2010), CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Schäfer, S., Tebbi, T.: Autosubst: Automation for de Bruijn substitutions. In: 6th Coq Workshop (July 2014)Google Scholar
  25. 25.
    Urban, C.: Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning 40(4), 327–356 (2008), CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in nominal isabelle. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 480–500. Springer, Heidelberg (2011), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.IRIT – Institut de Recherche en Informatique de ToulouseUniversité de ToulouseToulouseFrance

Personalised recommendations