Relaxed Stratification: A New Approach to Practical Complete Predicate Refinement

  • Tachio TerauchiEmail author
  • Hiroshi Unno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9032)


In counterexample-guided abstraction refinement, a predicate refinement scheme is said to be complete for a given theory if it is guaranteed to eventually find predicates sufficient to prove the given property, when such exist. However, existing complete methods require deciding if a proof of the counterexample’s spuriousness exists in some finite language of predicates. Such an exact finite-language-restricted predicate search is quite hard for many theories used in practice and incurs a heavy overhead. In this paper, we address the issue by showing that the language restriction can be relaxed so that the refinement process is restricted to infer proofs from some finite language L base  ∪ L ext but is only required to return a proof when the counterexample’s spuriousness can be proved in L base . Then, we show how a proof-based refinement algorithm can be made to satisfy the relaxed requirement and be complete by restricting only the theory-level reasoning in SMT to emit L base -restricted partial interpolants (while such an approach has been proposed previously, we show for the first time that it can be done for languages that are not closed under conjunctions and disjunctions). We also present a technique that uses a property of counterexample patterns to further improve the efficiency of the refinement algorithm while still satisfying the requirement. We have experimented with a prototype implementation of the new refinement algorithm, and show that it is able to achieve complete refinement with only a small overhead.


Conjunctive Normal Form Horn Clause Constraint Solver Predicate Variable Abstraction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp. 405–416. ACM (2012)Google Scholar
  2. 2.
    Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for verifying multi-threaded programs. In: Ball, T., Sagiv, M. (eds.) POPL, pp. 331–344. ACM (2011)Google Scholar
  3. 3.
    Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free horn clauses over LI+UIF. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 188–203. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Hermenegildo, M.V., Palsberg, J. (eds.) POPL, pp. 471–482. ACM (2010)Google Scholar
  5. 5.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Jones, N.D., Leroy, X. (eds.) POPL, pp. 232–244. ACM (2004)Google Scholar
  6. 6.
    Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4) (2009)Google Scholar
  7. 7.
    Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-order model checking. In: Hall, M.W., Padua, D.A. (eds.) PLDI, pp. 222–233. ACM (2011)Google Scholar
  9. 9.
    Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination verification for higher-order functional programs. In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 392–411. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science 345(1), 101–121 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Rümmer, P., Hojjat, H., Kuncak, V.: Classifying and solving horn clauses for verification. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 1–21. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  13. 13.
    Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verification. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for higher-order programs. In: Albert, E., Mu, S. (eds.) PEPM, pp. 53–62. ACM (2013)Google Scholar
  15. 15.
    Schrijver, A.: Theory of linear and integer programming. Wiley (1998)Google Scholar
  16. 16.
    Sebastiani, R.: Lazy satisability modulo theories. JSAT 3(3-4), 141–224 (2007)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Terauchi, T.: Dependent types from counterexamples. In: Hermenegildo, M.V., Palsberg, J. (eds.) POPL, pp. 119–130. ACM (2010)Google Scholar
  18. 18.
    Terauchi, T., Unno, H.: Relaxed stratification: A new approach to practical complete predicate refinement (2015),
  19. 19.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic 2(115-125), 10–13 (1968)Google Scholar
  20. 20.
    Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Porto, A., López-Fraguas, F.J. (eds.) PPDP, pp. 277–288. ACM (2009)Google Scholar
  21. 21.
    Unno, H., Terauchi, T.: Inferring simple solutions to recursion-free horn clauses via sampling. In: TACAS (2015) (to appear) Google Scholar
  22. 22.
    Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification of higher-order functional programs. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 75–86. ACM (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.JAISTNomiJapan
  2. 2.University of TsukubaTsukubaJapan

Personalised recommendations