Highly Ordered Macroporous Electrodes

  • Alexander Kuhn
  • Matthias Heim
Part of the Springer Handbooks book series (SHB)


In recent years, the field of highly ordered macroporous thin films coated onto solid electrode surfaces has received increasing attention, on the one hand, due to interesting fundamental questions, and, on the other hand, because of a large variety of potential applications of such designer structures, ranging from electrocatalysis to biosensors and energy storage/conversion. This chapter describes the synthesis, the characterization, and the features of such organized layers, with a special emphasis on an increasingly sophisticated and rational design, which is possible when using colloidal crystal structures as templates . Some possible applications of such modified electrodes are also highlighted in the last section of the chapter, illustrating their beneficial effects in various domains, going eventually far beyond pure electrochemical aspects.

In this chapter, we present the elaboration of highly-ordered macroporous electrodes using colloidal crystal templating. A structure is considered as macroporous, when the pore size exceeds 50 nm; pores with 2–50 nm are considered as mesopores , whereas pores smaller than 2 nm are termed microporous. Several techniques allowing the self-assembly of microspheres into colloidal crystal templates will be discussed in Sect. 6.1.1. After giving an overview in Sect. 6.1.2 over existing methods to infiltrate colloidal templates, Sects. 6.1.3 and 6.1.4 will focus on the controlled electrodeposition of metals and conducting polymers (CP s) into colloidal templates, and the electrochemical characterization of the resulting macroporous electrodes. Section 6.2 illustrates an approach to fabricate macroporous electrodes with complex pore architectures, including gradient pore structures. Assembly of colloidal microspheres into complex colloidal crystal architectures in a layer-by-layer deposition process using the Langmuir–Blodgett technique followed by infiltration of the template by electrochemical deposition enabled us to obtain this objective. In Sect. 6.3, we focus on miniaturized macroporous gold electrodes with a cylindrical geometry and their utility with respect to the electrocatalytic reduction of oxygen. The broad field of applications, in which macroporous electrodes can be used for, is presented in Sect. 6.4.


Photonic Crystal Pore Layer Inverse Opal Active Surface Area Colloidal Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

atomic layer deposition


antimony-doped tin oxide




counter electrode


conducting polymer


creactive protein


4-carboxy-(2,5,7-trinitro-9-fluorenylidene) malonitrile


cyclic voltammogram


chemical vapor deposition




dye-sensitized solar cell


d-sorbitol dehydrogenase


electro-assisted deposition


electrodeposited paint


elastic photonic crystal


face-centered cubic


hexagonal close-packed


indium tin oxide


Langmuir–Blodgett technique




photonic bandgap




photonic crystal


poly(dimethyldiallylammonium chloride)


plasma enhanced CVD




poly(methyl methacrylate)








physical vapor deposition


reference electrode


self-assembled monolayer


sodium dodecyl sulfate


scanning electron microscopy


surface-enhanced Raman spectroscopy


surface plasmon polariton


tetrabutylammonium tetrafluoroborate


transmission electron microscopy


tetraethyl orthosilicate


vertical deposition


working electrode


  1. [1]
    D. Linden, T.B. Reddy: Handbook of Batteries (McGraw-Hill, New York 2002)Google Scholar
  2. [2]
    A. Wieckowski, J. Norskov: Fuel Cell Science (Wiley, Hoboken 2010)CrossRefGoogle Scholar
  3. [3]
    J. Wang: Analytical Electrochemistry (Wiley, Hoboken 2006)CrossRefGoogle Scholar
  4. [4]
    P. Gründler: Chemical Sensors (Springer, Berlin, Heidelberg 2007)Google Scholar
  5. [5]
    A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4, 366–377 (2005)CrossRefGoogle Scholar
  6. [6]
    Y.-G. Guo, J.-S. Hu, L.-J. Wan: Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater. 20, 2878–2887 (2008)CrossRefGoogle Scholar
  7. [7]
    P.G. Bruce, B. Scrosati, J.-M. Tarascon: Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47, 2930–2946 (2008)CrossRefGoogle Scholar
  8. [8]
    A. Walcarius: Template-directed porous electrodes in electroanalysis, Anal. Bioanal. Chem. 396, 261–272 (2010)CrossRefGoogle Scholar
  9. [9]
    C.R. Martin: Nanomaterials: A membrane-based synthetic approach, Science 266, 1961–1966 (1994)CrossRefGoogle Scholar
  10. [10]
    Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, J. Frenzel: Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying, J. Phys. Chem. C 113, 12629–12636 (2009)CrossRefGoogle Scholar
  11. [11]
    F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, C. Mendive: Opals: Status and prospects, Angew. Chem. Int. Ed. 48, 6212–6233 (2009)CrossRefGoogle Scholar
  12. [12]
    D.J. Norris, E.G. Arlinghaus, L. Meng, R. Heiny, L.E. Scriven: Opaline photonic crystals: How does self-assembly work?, Adv. Mater. 16, 1393–1399 (2004)CrossRefGoogle Scholar
  13. [13]
    G.M. Whitesides, B. Grzybowski: Self-assembly at all scales, Science 295, 2418–2421 (2002)CrossRefGoogle Scholar
  14. [14]
    P. Ni, P. Dong, B. Cheng, X. Li, D. Zhang: Synthetic SiO2 opals, Adv. Mater. 13, 437–441 (2001)CrossRefGoogle Scholar
  15. [15]
    V.K. LaMer, R.H. Dinegar: Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc. 72, 4847–4854 (1950)CrossRefGoogle Scholar
  16. [16]
    Y. Xia, B. Gates, Y. Yin, Y. Lu: Monodispersed colloidal spheres: Old materials with new applications, Adv. Mater. 12, 693–713 (2000)CrossRefGoogle Scholar
  17. [17]
    W. Stöber, A. Fink, E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  18. [18]
    H. Giesche: Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics, J. Eur. Ceram. Soc. 14, 189–204 (1994)CrossRefGoogle Scholar
  19. [19]
    C.G. Tan, B.D. Bowen, N. Epstein: Production of monodisperse colloidal silica spheres: Effect of temperature, J. Colloid Interface Sci. 118, 290–293 (1987)CrossRefGoogle Scholar
  20. [20]
    G.H. Bogush, M.A. Tracy, C.F.I.V. Zukoski: Preparation of monodisperse silica particles: Control of size and mass fraction, J. Non-Cryst. Solids 104, 95–106 (1988)CrossRefGoogle Scholar
  21. [21]
    K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J.P. Delville, M.H. Delville: Smart control of monodisperse Stöber silica particles: Effect of reactant addition rate on growth process, Langmuir 21, 1516–1523 (2004)CrossRefGoogle Scholar
  22. [22]
    Y.S. Lee: Self-Assembly and Nanotechnology (Wiley, Hoboken 2008)CrossRefGoogle Scholar
  23. [23]
    J.F. Galisteo-López, M. Ibisate, R. Sapienza, L.S. Froufe-Pérez, Á. Blanco, C. López: Self-assembled photonic structures, Adv. Mater. 23, 30–69 (2011)CrossRefGoogle Scholar
  24. [24]
    F. Li, D.P. Josephson, A. Stein: Colloidal assembly: The road from particles to colloidal molecules and crystals, Angew. Chem. Int. Ed. 50, 360–388 (2011)CrossRefGoogle Scholar
  25. [25]
    R. Mayoral, J. Requena, J.S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, Á. Blanco: 3D Long-range ordering in ein SiO2 submicrometer-sphere sintered superstructure, Adv. Mater. 9, 257–260 (1997)CrossRefGoogle Scholar
  26. [26]
    H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J.S. Moya, L. Vazquez: Evidence of fcc crystallization of SiO2 nanospheres, Langmuir 13, 6009–6011 (1997)CrossRefGoogle Scholar
  27. [27]
    L.V. Woodcock: Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures, Nature 385, 141–143 (1997)CrossRefGoogle Scholar
  28. [28]
    K.E. Davis, W.B. Russel, W.J. Glantschnig: Settling suspensions of colloidal silica: Observations and x-ray measurements, J. Chem. Soc. Faraday Trans. 87, 411–424 (1991)CrossRefGoogle Scholar
  29. [29]
    V.M. Shelekhina, O.A. Prokhorov, P.A. Vityaz, A.P. Stupak, S.V. Gaponenko, N.V. Gaponenko: Towards 3D photonic crystals, Synth. Met. 124, 137–139 (2001)CrossRefGoogle Scholar
  30. [30]
    M. Holgado, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C.J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, C. López: Electrophoretic deposition to control artificial opal growth, Langmuir 15, 4701–4704 (1999)CrossRefGoogle Scholar
  31. [31]
    A. van Blaaderen, R. Ruel, P. Wiltzius: Template-directed colloidal crystallization, Nature 385, 321–324 (1997)CrossRefGoogle Scholar
  32. [32]
    O. Vickreva, O. Kalinina, E. Kumacheva: Colloid crystal growth under oscillatory shear, Adv. Mater. 12, 110–112 (2000)CrossRefGoogle Scholar
  33. [33]
    C.D. Dushkin, G.S. Lazarov, S.N. Kotsev, H. Yoshimura, K. Nagayama: Effect of growth conditions on the structure of two-dimensional latex crystals: Experiment, Colloid. Polym. Sci. 277, 914–930 (1999)CrossRefGoogle Scholar
  34. [34]
    M. Müller, R. Zentel, T. Maka, S.G. Romanov, C.M. Sotomayor Torres: Photonic crystal films with high refractive index contrast, Adv. Mater. 12, 1499–1503 (2000)CrossRefGoogle Scholar
  35. [35]
    N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, K. Nagayama: Mechanism of formation of two-dimensional crystals from latex particles on substrates, Langmuir 8, 3183–3190 (1992)CrossRefGoogle Scholar
  36. [36]
    P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin: Single-crystal colloidal multilayers of controlled thickness, Chem. Mater. 11, 2132–2140 (1999)CrossRefGoogle Scholar
  37. [37]
    Q. Yan, Z. Zhou, X.S. Zhao: Inward-growing self-assembly of colloidal crystal films on horizontal substrates, Langmuir 21, 3158–3164 (2005)CrossRefGoogle Scholar
  38. [38]
    Y. Li, T. Kunitake, S. Fujikawa: Efficient fabrication of large, robust films of 3D-ordered polystyrene latex, Colloids Surf. A 275, 209–217 (2006)CrossRefGoogle Scholar
  39. [39]
    Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris: On-chip natural assembly of silicon photonic bandgap crystals, Nature 414, 289–293 (2001)CrossRefGoogle Scholar
  40. [40]
    S. Wong, V. Kitaev, G.A. Ozin: Colloidal crystal films: Advances in universality and perfection, J. Am. Chem. Soc. 125, 15589–15598 (2003)CrossRefGoogle Scholar
  41. [41]
    S.M. Yang, H. Míguez, G.A. Ozin: Opal circuits of light – Planarized microphotonic crystal chips, Adv. Funct. Mater. 12, 425–431 (2002)CrossRefGoogle Scholar
  42. [42]
    Y.H. Ye, F. LeBlanc, A. Haché, V.V. Truong: Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality, Appl. Phys. Lett. 78, 52–54 (2001)CrossRefGoogle Scholar
  43. [43]
    M.A. McLachlan, N.P. Johnson, R.M. de la Rue, D.W. McComb: Thin film photonic crystals: Synthesis and characterisation, J. Mater. Chem. 14, 144–150 (2004)CrossRefGoogle Scholar
  44. [44]
    A. Hartsuiker, W.L. Vos: Structural properties of opals grown with vertical controlled drying, Langmuir 24, 4670–4675 (2008)CrossRefGoogle Scholar
  45. [45]
    S.-L. Kuai, X.-F. Hu, A. Haché, V.-V. Truong: High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique, J. Cryst. Growth 267, 317–324 (2004)CrossRefGoogle Scholar
  46. [46]
    J. Zhang, H. Liu, Z. Wang, N. Ming: Assembly of high-quality colloidal crystals under negative pressure, J. Appl. Phys. 103, 013517–013520 (2008)CrossRefGoogle Scholar
  47. [47]
    F. Piret, B.L. Su: Effects of pH and ionic strength on the self-assembly of silica colloids to opaline photonic structures, Chem. Phys. Lett. 457, 376–380 (2008)CrossRefGoogle Scholar
  48. [48]
    B. Griesebock, M. Egen, R. Zentel: Large photonic films by crystallization on fluid substrates, Chem. Mater. 14, 4023–4025 (2002)CrossRefGoogle Scholar
  49. [49]
    O.D. Velev, K.H. Bhatt: On-chip micromanipulation and assembly of colloidal particles by electric fields, Soft Matter 2, 738–750 (2006)CrossRefGoogle Scholar
  50. [50]
    V. Kitaev, G.A. Ozin: Self-assembled surface patterns of binary colloidal crystals, Adv. Mater. 15, 75–78 (2003)CrossRefGoogle Scholar
  51. [51]
    S.H. Im, M.H. Kim, O.O. Park: Thickness control of colloidal crystals with a substrate dipped at a tilted angle into a colloidal suspension, Chem. Mater. 15, 1797–1802 (2003)CrossRefGoogle Scholar
  52. [52]
    A.S. Dimitrov, K. Nagayama: Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir 12, 1303–1311 (1996)CrossRefGoogle Scholar
  53. [53]
    Z.-Z. Gu, A. Fujishima, O. Sato: Fabrication of high-quality opal films with controllable thickness, Chem. Mater. 14, 760–765 (2002)CrossRefGoogle Scholar
  54. [54]
    L.K. Teh, N.K. Tan, C.C. Wong, S. Li: Growth imperfections in three-dimensional colloidal self-assembly, Appl. Phys. A 81, 1399–1404 (2005)CrossRefGoogle Scholar
  55. [55]
    C. Jin, M.A. McLachlan, D.W. McComb, R.M. de la Rue, N.P. Johnson: Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals, Nano Lett. 5, 2646–2650 (2005)CrossRefGoogle Scholar
  56. [56]
    A.L. Rogach, N.A. Kotov, D.S. Koktysh, J.W. Ostrander, G.A. Ragoisha: Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals, Chem. Mater. 12, 2721–2726 (2000)CrossRefGoogle Scholar
  57. [57]
    S.O. Lumsdon, E.W. Kaler, J.P. Williams, O.D. Velev: Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals, Appl. Phys. Lett. 82, 949–951 (2003)CrossRefGoogle Scholar
  58. [58]
    R.C. Hayward, D.A. Saville, I.A. Aksay: Electrophoretic assembly of colloidal crystals with optically tunable micropatterns, Nature 404, 56–59 (2000)CrossRefGoogle Scholar
  59. [59]
    D.H. McCullough III, S.L. Regen: Don’t forget Langmuir–Blodgett films, Chem. Commun., 2787–2791 (2004)Google Scholar
  60. [60]
    C.G. Zoski: Handbook of Electrochemistry (Elsevier, Amsterdam 2007)Google Scholar
  61. [61]
    K. Hasegawa, H. Nishimori, M. Tatsumisago, T. Minami: Effect of poly(acrylic acid) on the preparation of thick silica films by electrophoretic sol-gel deposition of re-dispersed silica particles, J. Mater. Sci. 33, 1095–1098 (1998)CrossRefGoogle Scholar
  62. [62]
    R.J. Kershner, J.W. Bullard, M.J. Cima: The role of electrochemical reactions during electrophoretic particle deposition, J. Colloid Interface Sci. 278, 146–154 (2004)CrossRefGoogle Scholar
  63. [63]
    M. Giersig, P. Mulvaney: Preparation of ordered colloid monolayers by electrophoretic deposition, Langmuir 9, 3408–3413 (1993)CrossRefGoogle Scholar
  64. [64]
    M. Böhmer: In situ observation of 2-dimensional clustering during electrophoretic deposition, Langmuir 12, 5747–5750 (1996)CrossRefGoogle Scholar
  65. [65]
    P. Richetti, J. Prost, P. Barois: Two-dimensional aggregation and crystallization of a colloidal suspension of latex spheres, J. Phys. Lett. 45, 1137–1143 (1984)CrossRefGoogle Scholar
  66. [66]
    S.-R. Yeh, M. Seul, B.I. Shraiman: Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow, Nature 386, 57–59 (1997)CrossRefGoogle Scholar
  67. [67]
    T. Gong, D.T. Wu, D.W.M. Marr: Two-dimensional electrohydrodynamically induced colloidal phases, Langmuir 18, 10064–10067 (2002)CrossRefGoogle Scholar
  68. [68]
    K.-Q. Zhang, X.Y. Liu: In situ observation of colloidal monolayer nucleation driven by an alternating electric field, Nature 429, 739–743 (2004)CrossRefGoogle Scholar
  69. [69]
    A.S. Negi, K. Sengupta, A.K. Sood: Frequency-dependent shape changes of colloidal clusters under transverse electric field, Langmuir 21, 11623–11627 (2005)CrossRefGoogle Scholar
  70. [70]
    T.H. Zhang, X.Y. Liu: Configurations and diffusion of point defects in two-dimensional colloidal crystals, Appl. Phys. Lett. 89, 261914 (2006)CrossRefGoogle Scholar
  71. [71]
    Y. Liu, R.-G. Xie, X.-Y. Liu: Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field, Appl. Phys. Lett. 91, 063105–063103 (2007)CrossRefGoogle Scholar
  72. [72]
    S.O. Lumsdon, E.W. Kaler, O.D. Velev: Two-dimensional crystallization of microspheres by a coplanar ac electric field, Langmuir 20, 2108–2116 (2004)CrossRefGoogle Scholar
  73. [73]
    A. Yethiraj, J.H.J. Thijssen, A. Wouterse, A. van Blaaderen: Large-area electric-field-induced colloidal single crystals for photonic applications, Adv. Mater. 16, 596–600 (2004)CrossRefGoogle Scholar
  74. [74]
    R.C. Bailey, K.J. Stevenson, J.T. Hupp: Assembly of micropatterned colloidal gold thin films via microtransfer molding and electrophoretic deposition, Adv. Mater. 12, 1930–1934 (2000)CrossRefGoogle Scholar
  75. [75]
    R. Xie, X.-Y. Liu: Electrically directed on-chip reversible patterning of two-dimensional tunable colloidal structures, Adv. Funct. Mater. 18, 802–809 (2008)CrossRefGoogle Scholar
  76. [76]
    W.M. Choi, O.O. Park: The fabrication of micropatterns of a 2D colloidal assembly by electrophoretic deposition, Nanotechnology 17, 325 (2006)CrossRefGoogle Scholar
  77. [77]
    R. Xie, X.-Y. Liu: Controllable epitaxial crystallization and reversible oriented patterning of two-dimensional colloidal crystals, J. Am. Chem. Soc. 131, 4976–4982 (2009)CrossRefGoogle Scholar
  78. [78]
    I. Langmuir: The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc. 39, 1848–1906 (1917)CrossRefGoogle Scholar
  79. [79]
    K.B. Blodgett: Films built by depositing successive monomolecular layers on a solid surface, J. Am. Chem. Soc. 57, 1007–1022 (1935)CrossRefGoogle Scholar
  80. [80]
    M. Bardosova, M.E. Pemble, I.M. Povey, R.H. Tredgold: The Langmuir–Blodgett approach to making colloidal photonic crystals from silica spheres, Adv. Mater. 22, 3104–3124 (2010)CrossRefGoogle Scholar
  81. [81]
    G. Tolnai, F. Csempesz, M. Kabai-Faix, E. Kálmán, Z. Keresztes, A.L. Kovács, J.J. Ramsden, Z. Hórvölgyi: Preparation and characterization of surface-modified silica-nanoparticles, Langmuir 17, 2683–2687 (2001)CrossRefGoogle Scholar
  82. [82]
    Z. Wu, H. Han, W. Han, B. Kim, K.H. Ahn, K. Lee: Controlling the hydrophobicity of submicrometer silica spheres via surface modification for nanocomposite applications, Langmuir 23, 7799–7803 (2007)CrossRefGoogle Scholar
  83. [83]
    M. Bardosova, F.C. Dillon, M.E. Pemble, I.M. Povey, R.H. Tredgold: Langmuir–Blodgett assembly of colloidal photonic crystals using silica particles prepared without the use of surfactant molecules, J. Colloid Interface Sci. 333, 816 (2009)CrossRefGoogle Scholar
  84. [84]
    M. Szekeres, O. Kamalin, R.A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, I. Dekany: Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method, J. Mater. Chem. 12, 3268–3274 (2002)CrossRefGoogle Scholar
  85. [85]
    M. Bardosova, P. Hodge, L. Pach, M.E. Pemble, V. Smatko, R.H. Tredgold, D. Whitehead: Synthetic opals made by the Langmuir–Blodgett method, Thin Solid Films 437, 276–279 (2003)CrossRefGoogle Scholar
  86. [86]
    P. Jiang, M.J. McFarland: Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating, J. Am. Chem. Soc. 126, 13778–13786 (2004)CrossRefGoogle Scholar
  87. [87]
    B. van Duffel, R.H.A. Ras, F.C. De Schryver, R.A. Schoonheydt: Langmuir–Blodgett deposition and optical diffraction of two-dimensional opal, J. Mater. Chem. 11, 3333–3336 (2001)CrossRefGoogle Scholar
  88. [88]
    Y. Li, W. Cai, G. Duan: Ordered micronanostructured arrays based on the monolayer colloidal crystals, Chem. Mater. 20, 615–624 (2007)CrossRefGoogle Scholar
  89. [89]
    G. Zhang, D. Wang: Colloidal lithography – The art of nanochemical patterning, Chem. Asian J. 4, 236–245 (2009)CrossRefGoogle Scholar
  90. [90]
    S.G. Romanov, M. Bardosova, M. Pemble, C.M.S. Torres: (2+1)-dimensional photonic crystals from Langmuir–Blodgett colloidal multilayers, Appl. Phys. Lett. 89, 043105–043103 (2006)CrossRefGoogle Scholar
  91. [91]
    M.E. Pemble, M. Bardosova, I.M. Povey, R.H. Tredgold, D. Whitehead: Novel photonic crystal thin films using the Langmuir–Blodgett approach, Physica B 394, 233–237 (2007)CrossRefGoogle Scholar
  92. [92]
    S.G. Romanov, M. Bardosova, D.E. Whitehead, I.M. Povey, M. Pemble, C.M.S. Torres: Erasing diffraction orders: Opal versus Langmuir–Blodgett colloidal crystals, Appl. Phys. Lett. 90, 133101 (2007)CrossRefGoogle Scholar
  93. [93]
    H.-L. Li, W. Dong, H.-J. Bongard, F. Marlow: Improved controllability of opal film growth using capillaries for the deposition process, J. Phys. Chem. B 109, 9939–9945 (2005)CrossRefGoogle Scholar
  94. [94]
    X. Wang, S.M. Husson, X. Qian, S.R. Wickramasinghe: Vertical cell assembly of colloidal crystal films with controllable thickness, Mater. Lett. 63, 1981–1983 (2009)CrossRefGoogle Scholar
  95. [95]
    R.M. Amos, J.G. Rarity, P.R. Tapster, T.J. Shepherd, S.C. Kitson: Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment, Phys. Rev. E 61, 2929 (2000)CrossRefGoogle Scholar
  96. [96]
    C.E. Finlayson, P. Spahn, D.R.E. Snoswell, G. Yates, A. Kontogeorgos, A.I. Haines, G.P. Hellmann, J.J. Baumberg: 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing, Adv. Mater. 23, 1540–1544 (2011)CrossRefGoogle Scholar
  97. [97]
    S.H. Park, D. Qin, Y. Xia: Crystallization of mesoscale particles over large areas, Adv. Mater. 10, 1028–1032 (1998)CrossRefGoogle Scholar
  98. [98]
    A. Mihi, M. Ocaña, H. Míguez: Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media, Adv. Mater. 18, 2244–2249 (2006)CrossRefGoogle Scholar
  99. [99]
    O.L.J. Pursiainen, J.J. Baumberg, H. Winkler, B. Viel, P. Spahn, T. Ruhl: Shear-induced organization in flexible polymer opals, Adv. Mater. 20, 1484–1487 (2008)CrossRefGoogle Scholar
  100. [100]
    R. Fenollosa, F. Meseguer: Non-close-packed artificial opals, Adv. Mater. 15, 1282–1285 (2003)CrossRefGoogle Scholar
  101. [101]
    A. Stein, F. Li, N.R. Denny: Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles, Chem. Mater. 20, 649–666 (2007)CrossRefGoogle Scholar
  102. [102]
    W. Dong, H. Bongard, B. Tesche, F. Marlow: Inverse opals with a skeleton structure: Photonic crystals with two complete bandgaps, Adv. Mater. 14, 1457–1460 (2002)CrossRefGoogle Scholar
  103. [103]
    F. Marlow, W. Dong: Engineering nanoarchitectures for photonic crystals, ChemPhysChem 4, 549–554 (2003)CrossRefGoogle Scholar
  104. [104]
    P. Jiang: Surface-templated nanostructured films with two-dimensional ordered arrays of voids, Angew. Chem. Int. Ed. 43, 5625–5628 (2004)CrossRefGoogle Scholar
  105. [105]
    A.A. Zakhidov, R.H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S.O. Dantas, J. Marti, V.G. Ralchenko: Carbon structures with three-dimensional periodicity at optical wavelengths, Science 282, 897–901 (1998)CrossRefGoogle Scholar
  106. [106]
    J.S. King, E. Graugnard, C.J. Summers: TiO2 inverse opals fabricated using low-temperature atomic layer deposition, Adv. Mater. 17, 1010–1013 (2005)CrossRefGoogle Scholar
  107. [107]
    S. Reculusa, B. Agricole, A. Derré, M. Couzi, E. Sellier, S. Ravaine, P. Delhaès: Carbon membranes of controlled thickness from colloidal crystals, Adv. Mater. 18, 1705–1708 (2006)CrossRefGoogle Scholar
  108. [108]
    H. Miguez, N. Tetreault, B. Hatton, S.M. Yang, D. Perovic, G.A. Ozin: Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide, Chem. Commun., 2736–2737 (2002)Google Scholar
  109. [109]
    E. Palacios-Lidón, J.F. Galisteo-López, B.H. Juárez, C. López: Engineered planar defects embedded in opals, Adv. Mater. 16, 341–345 (2004)CrossRefGoogle Scholar
  110. [110]
    A. Rugge, J.S. Becker, R.G. Gordon, S.H. Tolbert: Tungsten nitride inverse opals by atomic layer deposition, Nano Lett. 3, 1293–1297 (2003)CrossRefGoogle Scholar
  111. [111]
    J.S. King, D.P. Gaillot, E. Graugnard, C.J. Summers: Conformally back-filled, non-close-packed inverse-opal photonic crystals, Adv. Mater. 18, 1063–1067 (2006)CrossRefGoogle Scholar
  112. [112]
    B.T. Holland, C.F. Blanford, A. Stein: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science 281, 538–540 (1998)CrossRefGoogle Scholar
  113. [113]
    J.E.G.J. Wijnhoven, W.L. Vos: Preparation of photonic crystals made of air spheres in titania, Science 281, 802–804 (1998)CrossRefGoogle Scholar
  114. [114]
    Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, Y. Chi: Fabrication of anatase titania inverse opal films using polystyrene templates, Superlattices Microstruct. 40, 155–160 (2006)CrossRefGoogle Scholar
  115. [115]
    P. Jiang, K.S. Hwang, D.M. Mittleman, J.F. Bertone, V.L. Colvin: Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids, J. Am. Chem. Soc. 121, 11630–11637 (1999)CrossRefGoogle Scholar
  116. [116]
    Z. Zhong, Y. Yin, B. Gates, Y. Xia: Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads, Adv. Mater. 12, 206–209 (2000)CrossRefGoogle Scholar
  117. [117]
    G.I.N. Waterhouse, M.R. Waterland: Opal and inverse opal photonic crystals: Fabrication and characterization, Polyhedron 26, 356–368 (2007)CrossRefGoogle Scholar
  118. [118]
    J.P. Bosco, K. Sasaki, M. Sadakane, W. Ueda, J.G. Chen: Synthesis and characterization of three-dimensionally ordered macroporous (3DOM) tungsten carbide: Application to direct methanol fuel cells, Chem. Mater. 22, 966–973 (2009)CrossRefGoogle Scholar
  119. [119]
    Y. Ma, J.F. Chen, Y. Ren, X. Tao: Transition metal-doped titania inverse opals: Fabrication and characterization, Colloids Surf. A 370, 129–135 (2010)CrossRefGoogle Scholar
  120. [120]
    S.H. Park, Y. Xia: Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores, Adv. Mater. 10, 1045–1048 (1998)CrossRefGoogle Scholar
  121. [121]
    S.A. Johnson, P.J. Ollivier, T.E. Mallouk: Ordered mesoporous polymers of tunable pore size from colloidal silica templates, Science 283, 963–965 (1999)CrossRefGoogle Scholar
  122. [122]
    H. Míguez, F. Meseguer, C. López, F. López-Tejeira, J. Sánchez-Dehesa: Synthesis and photonic bandgap characterization of polymer inverse opals, Adv. Mater. 13, 393–396 (2001)CrossRefGoogle Scholar
  123. [123]
    D.P. Puzzo, A.C. Arsenault, I. Manners, G.A. Ozin: Electroactive inverse opal: A single material for all colors, Angew. Chem. Int. Ed. 48, 943–947 (2009)CrossRefGoogle Scholar
  124. [124]
    F. Yan, W.A. Goedel: A simple and effective method for the preparation of porous membranes with three-dimensionally arranged pores, Adv. Mater. 16, 911–915 (2004)CrossRefGoogle Scholar
  125. [125]
    P.V. Braun, R.W. Zehner, C.A. White, M.K. Weldon, C. Kloc, S.S. Patel, P. Wiltzius: Epitaxial growth of high dielectric contrast three-dimensional photonic crystals, Adv. Mater. 13, 721–724 (2001)CrossRefGoogle Scholar
  126. [126]
    O.D. Velev, P.M. Tessier, A.M. Lenhoff, E.W. Kaler: Materials: A class of porous metallic nanostructures, Nature 401, 548–548 (1999)CrossRefGoogle Scholar
  127. [127]
    E. Arsenault, N. Soheilnia, G.A. Ozin: Periodic macroporous nanocrystalline antimony-doped tin oxide electrode, ACS Nano 5, 2984–2988 (2011)CrossRefGoogle Scholar
  128. [128]
    G. Subramanian, V.N. Manoharan, J.D. Thorne, D.J. Pine: Ordered macroporous materials by colloidal assembly: A possible route to photonic bandgap materials, Adv. Mater. 11, 1261–1265 (1999)CrossRefGoogle Scholar
  129. [129]
    P.M. Tessier, O.D. Velev, A.T. Kalambur, A.M. Lenhoff, J.F. Rabolt, E.W. Kaler: Structured metallic films for optical and spectroscopic applications via colloidal crystal templating, Adv. Mater. 13, 396–400 (2001)CrossRefGoogle Scholar
  130. [130]
    D. Wang, J. Li, C.T. Chan, V. Salgueiriño-Maceira, L.M. Liz-Marzán, S. Romanov, F. Caruso: Optical properties of nanoparticle-based metallodielectric inverse opals, Small 1, 122–130 (2005)CrossRefGoogle Scholar
  131. [131]
    Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, Z. Gu: Encoded porous beads for label-free multiplex detection of tumor markers, Adv. Mater. 21, 569–572 (2009)CrossRefGoogle Scholar
  132. [132]
    N. Sapoletova, T. Makarevich, K. Napolskii, E. Mishina, A. Eliseev, A. van Etteger, T. Rasing, G. Tsirlina: Controlled growth of metallic inverse opals by electrodeposition, Phys. Chem. Chem. Phys. 12, 15414–15422 (2010)CrossRefGoogle Scholar
  133. [133]
    L. Santos, P. Martin, J. Ghilane, P.-C. Lacaze, H. Randriamahazaka, L.M. Abrantes, J.-C. Lacroix: Electrosynthesis of well-organized nanoporous poly(3,4-ethylenedioxythiophene) by nanosphere lithography, Electrochem. Commun. 12, 872–875 (2010)CrossRefGoogle Scholar
  134. [134]
    X. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, F. Endres: Electrodeposition of 3D ordered macroporous germanium from ionic liquids: A feasible method to make photonic crystals with a high dielectric constant, Angew. Chem. Int. Ed. 48, 2703–2707 (2009)CrossRefGoogle Scholar
  135. [135]
    P.N. Bartlett, P.R. Birkin, M.A. Ghanem, C.-S. Toh: Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates, J. Mater. Chem. 11, 849–853 (2001)CrossRefGoogle Scholar
  136. [136]
    P. Jiang, J. Cizeron, J.F. Bertone, V.L. Colvin: Preparation of macroporous metal films from colloidal crystals, J. Am. Chem. Soc. 121, 7957–7958 (1999)CrossRefGoogle Scholar
  137. [137]
    P.N. Bartlett, P.R. Birkin, M.A. Ghanem: Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates, Chem. Commun., 1671–1672 (2000)Google Scholar
  138. [138]
    P.N. Bartlett, J.J. Baumberg, P.R. Birkin, M.A. Ghanem, M.C. Netti: Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres, Chem. Mater. 14, 2199–2208 (2002)CrossRefGoogle Scholar
  139. [139]
    S. Ben-Ali, D.A. Cook, S.A.G. Evans, A. Thienpont, P.N. Bartlett, A. Kuhn: Electrocatalysis with monolayer modified highly organized macroporous electrodes, Electrochem. Commun. 5, 747–751 (2003)CrossRefGoogle Scholar
  140. [140]
    R. Szamocki, S. Reculusa, S. Ravaine, P.N. Bartlett, A. Kuhn, R. Hempelmann: Tailored mesostructuring and biofunctionalization of gold for increased electroactivity, Angew. Chem. Int. Ed. 45, 1317–1321 (2006)CrossRefGoogle Scholar
  141. [141]
    R. Szamocki, A. Velichko, C. Holzapfel, F. Mücklich, S. Ravaine, P. Garrigue, N. Sojic, R. Hempelmann, A. Kuhn: Macroporous ultramicroelectrodes for improved electroanalytical measurements, Anal. Chem. 79, 533–539 (2007)CrossRefGoogle Scholar
  142. [142]
    A. Altube, Á. Blanco, C. López: Electrodeposition and optical properties of silver infiltrated photonic nanostructures, Mater. Lett. 62, 2677–2680 (2008)CrossRefGoogle Scholar
  143. [143]
    P.N. Bartlett, J.J. Baumberg, S. Coyle, M.E. Abdelsalam: Optical properties of nanostructured metal films, Faraday Discuss. 125, 117–132 (2004)CrossRefGoogle Scholar
  144. [144]
    T. Sumida, Y. Wada, T. Kitamura, S. Yanagida: Construction of stacked opaline films and electrochemical deposition of ordered macroporous nickel, Langmuir 18, 3886–3894 (2002)CrossRefGoogle Scholar
  145. [145]
    P.N. Bartlett, M.A. Ghanem, I.S. El Hallag, P. de Groot, A. Zhukov: Electrochemical deposition of macroporous magnetic networks using colloidal templates, J. Mater. Chem. 13, 2596–2602 (2003)CrossRefGoogle Scholar
  146. [146]
    Y.-W. Chung, I.-C. Leu, J.-H. Lee, J.-H. Yen, M.-H. Hon: Fabrication of various nickel nanostructures by manipulating the one-step electrodeposition process, J. Electrochem. Soc. 154, E77–E83 (2007)CrossRefGoogle Scholar
  147. [147]
    Y. Hao, F.Q. Zhu, C.L. Chien, P.C. Searson: Fabrication and magnetic properties of ordered macroporous nickel structures, J. Electrochem. Soc. 154, D65–D69 (2007)CrossRefGoogle Scholar
  148. [148]
    X. Yu, Y.J. Lee, R. Furstenberg, J.O. White, P.V. Braun: Filling fraction dependent properties of inverse opal metallic photonic crystals, Adv. Mater. 19, 1689–1692 (2007)CrossRefGoogle Scholar
  149. [149]
    H. Zhang, X. Yu, P.V. Braun: Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes, Nat. Nano 6, 277–281 (2011)CrossRefGoogle Scholar
  150. [150]
    V. Urbanová, M. Bartoš, K. Vytřas, A. Kuhn: Porous bismuth film electrodes for signal increase in anodic stripping voltammetry, Electroanalysis 22, 1524–1530 (2010)CrossRefGoogle Scholar
  151. [151]
    V. Urbanová, K. Vytras, A. Kuhn: Macroporous antimony film electrodes for stripping analysis of trace heavy metals, Electrochem. Commun. 12, 114–117 (2010)CrossRefGoogle Scholar
  152. [152]
    T. Sumida, Y. Wada, T. Kitamura, S. Yanagida: Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids, Chem. Commun., 1613–1614 (2000)Google Scholar
  153. [153]
    T. Cassagneau, F. Caruso: Semiconducting polymer inverse opals prepared by electropolymerization, Adv. Mater. 14, 34–38 (2002)CrossRefGoogle Scholar
  154. [154]
    S. Tian, J. Wang, U. Jonas, W. Knoll: Inverse opals of polyaniline and its copolymers prepared by electrochemical techniques, Chem. Mater. 17, 5726–5730 (2005)CrossRefGoogle Scholar
  155. [155]
    P.V. Braun, P. Wiltzius: Microporous materials: Electrochemically grown photonic crystals, Nature 402, 603–604 (1999)CrossRefGoogle Scholar
  156. [156]
    T. Sumida, Y. Wada, T. Kitamura, S. Yanagida: Macroporous ZnO films electrochemically prepared by templating of opal films, Chem. Lett. 30, 38–39 (2001)CrossRefGoogle Scholar
  157. [157]
    Y. Yang, H. Yan, Z. Fu, B. Yang, J. Zuo, S. Fu: Enhanced photoluminescence from three-dimensional ZnO photonic crystals, Solid State Commun. 139, 218–221 (2006)CrossRefGoogle Scholar
  158. [158]
    T. Sumida, Y. Wada, T. Kitamura, S. Yanagida: Electrochemical change of the photonic stop band of the ordered macroporous WO3 films, Chem. Lett. 31, 180–181 (2002)CrossRefGoogle Scholar
  159. [159]
    P.N. Bartlett, T. Dunford, M.A. Ghanem: Templated electrochemical deposition of nanostructured macroporous PbO2, J. Mater. Chem. 12, 3130–3135 (2002)CrossRefGoogle Scholar
  160. [160]
    J. Hu, M. Abdelsalam, P. Bartlett, R. Cole, Y. Sugawara, J. Baumberg, S. Mahajan, G. Denuault: Electrodeposition of highly ordered macroporous iridium oxide through self-assembled colloidal templates, J. Mater. Chem. 19, 3855–3858 (2009)CrossRefGoogle Scholar
  161. [161]
    J. Lenz, V. Trieu, R. Hempelmann, A. Kuhn: Ordered macroporous ruthenium oxide electrodes for potentiometric and amperometric sensing applications, Electroanalysis 23, 1186–1192 (2011)CrossRefGoogle Scholar
  162. [162]
    T.M. Benedetti, V.R. Goncales, D.F.S. Petri, S.I.C. De Torresi, R.M. Torresi: Macroporous MnO2 electrodes obtained by template assisted electrodeposition for electrochemical capacitors, J. Braz. Chem. Soc. 21, 1704–1709 (2010)CrossRefGoogle Scholar
  163. [163]
    Y.F. Yuan, X.H. Xia, J.B. Wu, Y.B. Chen, J.L. Yang, S.Y. Guo: Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition, Electrochim. Acta 56, 1208–1212 (2011)CrossRefGoogle Scholar
  164. [164]
    V.R. Goncales, R.P. Salvador, M.R. Alcantara, S.I.C. De Torresi: On the template synthesis of nanostructured inorganic/organic hybrid films, J. Electrochem. Soc. 155, K140–K145 (2008)CrossRefGoogle Scholar
  165. [165]
    R. Szamocki, A. Velichko, F. Mücklich, S. Reculusa, S. Ravaine, S. Neugebauer, W. Schuhmann, R. Hempelmann, A. Kuhn: Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes, Electrochem. Commun. 9, 2121–2127 (2007)CrossRefGoogle Scholar
  166. [166]
    K.S. Choi, E.W. McFarland, G.D. Stucky: Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly, Adv. Mater. 15, 2018–2021 (2003)CrossRefGoogle Scholar
  167. [167]
    R. Szamocki: Synthèse Contrôllée d’Électrodes Macroporeuses Pour des Applications Électrocatalytiques, Ph.D. Thesis (University Bordeaux I/Universität des Saarlandes, Bordeaux/Saarbrücken 2006)Google Scholar
  168. [168]
    M. Heim, S. Reculusa, S. Ravaine, A. Kuhn: Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures, Adv. Funct. Mater. 22, 538–545 (2012)CrossRefGoogle Scholar
  169. [169]
    S. Trasatti, O.A. Petrii: Real surface area measurements in electrochemistry, J. Electroanal. Chem. 327, 353–376 (1992)CrossRefGoogle Scholar
  170. [170]
    G.G. Wallace, G.M. Spinks, L.A.P. Kane-Maguire: Conductive Electroactive Polymers: Intelligent Polymer Systems (CRC, Boca Raton 2009)Google Scholar
  171. [171]
    M. Singh, P.K. Kathuroju, N. Jampana: Polypyrrole based amperometric glucose biosensors, Sens. Actuators B 143, 430–443 (2009)CrossRefGoogle Scholar
  172. [172]
    E. Smela: A microfabricated movable electrochromic ‘‘Pixel’’ based on polypyrrole, Adv. Mater. 11, 1343–1345 (1999)CrossRefGoogle Scholar
  173. [173]
    M.R. Gandhi, P. Murray, G.M. Spinks, G.G. Wallace: Mechanism of electromechanical actuation in polypyrrole, Synth. Met. 73, 247–256 (1995)CrossRefGoogle Scholar
  174. [174]
    T.F. Otero, M.T. Cortés: Artificial muscles with tactile sensitivity, Adv. Mater. 15, 279–282 (2003)CrossRefGoogle Scholar
  175. [175]
    E. Smela: Conjugated polymer actuators for biomedical applications, Adv. Mater. 15, 481–494 (2003)CrossRefGoogle Scholar
  176. [176]
    W. Sun, X. Chen: Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor, J. Power Sources 193, 924 (2009)CrossRefGoogle Scholar
  177. [177]
    U. Lange, N.V. Roznyatovskaya, V.M. Mirsky: Conducting polymers in chemical sensors and arrays, Anal. Chim. Acta 614, 1 (2008)CrossRefGoogle Scholar
  178. [178]
    A. Malinauskas: Electrocatalysis at conducting polymers, Synth. Met. 107, 75 (1999)CrossRefGoogle Scholar
  179. [179]
    V.G. Khomenko, V.Z. Barsukov, A.S. Katashinskii: The catalytic activity of conducting polymers toward oxygen reduction, Electrochim. Acta 50, 1675 (2005)CrossRefGoogle Scholar
  180. [180]
    R.A. Green, N.H. Lovell, G.G. Wallace, L.A. Poole-Warren: Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant, Biomaterials 29, 3393–3399 (2008)CrossRefGoogle Scholar
  181. [181]
    A. Mollahosseini, E. Noroozian: Electrodeposition of a highly adherent and thermally stable polypyrrole coating on steel from aqueous polyphosphate solution, Synth. Met. 159, 1247–1254 (2009)CrossRefGoogle Scholar
  182. [182]
    T. Cassagneau, F. Caruso: Inverse opals for optical affinity biosensing, Adv. Mater. 14, 1629–1633 (2002)CrossRefGoogle Scholar
  183. [183]
    W. Qian, Z.-Z. Gu, A. Fujishima, O. Sato: Three-dimensionally ordered macroporous polymer materials: An approach for biosensor applications, Langmuir 18, 4526–4529 (2002)CrossRefGoogle Scholar
  184. [184]
    C.Y. Kuo, S.Y. Lu, S. Chen, M. Bernards, S. Jiang: Stop band shift based chemical sensing with three-dimensional opal and inverse opal structures, Sens. Actuators B 124, 452–458 (2007)CrossRefGoogle Scholar
  185. [185]
    G. Kang, R.B. Borgens, Y. Cho: Well-ordered porous conductive polypyrrole as a new platform for neural interfaces, Langmuir 27, 6179–6184 (2011)CrossRefGoogle Scholar
  186. [186]
    L. Zhao, L. Tong, C. Li, Z. Gu, G. Shi: Polypyrrole actuators with inverse opal structures, J. Mater. Chem. 19, 1653–1658 (2009)CrossRefGoogle Scholar
  187. [187]
    L. Xu, J. Wang, Y. Song, L. Jiang: Electrically tunable polypyrrole inverse opals with switchable stopband, conductivity, and wettability, Chem. Mater. 20, 3554–3556 (2008)CrossRefGoogle Scholar
  188. [188]
    S. Ghosh, G.A. Bowmaker, R.P. Cooney, J.M. Seakins: Infrared and Raman spectroscopic studies of the electrochemical oxidative degradation of polypyrrole, Synth. Met. 95, 63 (1998)CrossRefGoogle Scholar
  189. [189]
    T.A. Skotheim, J.R. Reynolds: Handbook of Conducting Polymers (CRC, Boca Raton 2007)Google Scholar
  190. [190]
    E.A. Bazzaoui, S. Aeiyach, P.C. Lacaze: Electropolymerization of bithiophene on Pt and Fe electrodes in an aqueous sodium dodecylsulfate (SDS) micellar medium, Synth. Met. 83, 159–165 (1996)CrossRefGoogle Scholar
  191. [191]
    Y.Z. Wang, R.G. Sun, D.K. Wang, T.M. Swager, A.J. Epstein: Polarity- and voltage-controlled color-variable light-emitting devices based on conjugated polymers, Appl. Phys. Lett. 74, 2593–2595 (1999)CrossRefGoogle Scholar
  192. [192]
    P. Jiang, G.N. Ostojic, R. Narat, D.M. Mittleman, V.L. Colvin: The fabrication and bandgap engineering of photonic multilayers, Adv. Mater. 13, 389–393 (2001)CrossRefGoogle Scholar
  193. [193]
    Q. Yan, X.S. Zhao, Z. Zhou: Fabrication of colloidal crystal heterostructures using a horizontal deposition method, J. Cryst. Growth 288, 205–208 (2006)CrossRefGoogle Scholar
  194. [194]
    Q. Yan, A. Chen, S.J. Chua, X.S. Zhao: Incorporation of point defects into self-assembled three-dimensional colloidal crystals, Adv. Mater. 17, 2849–2853 (2005)CrossRefGoogle Scholar
  195. [195]
    Y. Jun, C.A. Leatherdale, D.J. Norris: Tailoring air defects in self-assembled photonic bandgap crystals, Adv. Mater. 17, 1908–1911 (2005)CrossRefGoogle Scholar
  196. [196]
    Q. Yan, Z. Zhou, X.S. Zhao, S.J. Chua: Line defects embedded in three-dimensional photonic crystals, Adv. Mater. 17, 1917–1920 (2005)CrossRefGoogle Scholar
  197. [197]
    F. Fleischhaker, A.C. Arsenault, Z. Wang, V. Kitaev, F.C. Peiris, G. von Freymann, I. Manners, R. Zentel, G.A. Ozin: Redox-tunable defects in colloidal photonic crystals, Adv. Mater. 17, 2455–2458 (2005)CrossRefGoogle Scholar
  198. [198]
    N. Tétreault, A.C. Arsenault, A. Mihi, S. Wong, V. Kitaev, I. Manners, H. Miguez, G.A. Ozin: Building tunable planar defects into photonic crystals using polyelectrolyte multilayers, Adv. Mater. 17, 1912–1916 (2005)CrossRefGoogle Scholar
  199. [199]
    R. Pozas, A. Mihi, M. Ocaña, H. Míguez: Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating, Adv. Mater. 18, 1183–1187 (2006)CrossRefGoogle Scholar
  200. [200]
    Q. Yan, L. Wang, X.S. Zhao: Artificial defect engineering in three-dimensional colloidal photonic crystals, Adv. Funct. Mater. 17, 3695–3706 (2007)CrossRefGoogle Scholar
  201. [201]
    J. Li, L. Xue, Z. Wang, Y. Han: Colloidal photonic crystals with a graded lattice-constant distribution, Colloid. Polym. Sci. 285, 1037–1041 (2007)CrossRefGoogle Scholar
  202. [202]
    G. Von Freymann, S. John, V. Kitaev, G.A. Ozin: Enhanced coupling to slow photon modes in three-dimensional graded colloidal photonic crystals, Adv. Mater. 17, 1273–1276 (2005)CrossRefGoogle Scholar
  203. [203]
    K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, A. Persoons: Insertion of a two-dimensional cavity into a self-assembled colloidal crystal, Langmuir 19, 4465–4468 (2003)CrossRefGoogle Scholar
  204. [204]
    Y. Zhao, K. Wostyn, G. De Schaetzen, K. Clays, L. Hellemans, A. Persoons, M. Szekeres, R.A. Schoonheydt: The fabrication of photonic band gap materials with a two-dimensional defect, Appl. Phys. Lett. 82, 3764–3766 (2003)CrossRefGoogle Scholar
  205. [205]
    P. Massé, S. Reculusa, K. Clays, S. Ravaine: Tailoring planar defect in three-dimensional colloidal crystals, Chem. Phys. Lett. 422, 251–255 (2006)CrossRefGoogle Scholar
  206. [206]
    P. Massé, S. Reculusa, S. Ravaine: Elaboration of photonic crystal heterostructures by the Langmuir–Blodgett method, Colloids Surf. A 284/285, 229–233 (2006)CrossRefGoogle Scholar
  207. [207]
    J.-F. Dechézelles, P. Massé, E. Cloutet, H. Cramail, S. Ravaine: Building planar defects into colloidal crystals using particles of different chemical nature, Colloids Surf. A 343, 8 (2009)CrossRefGoogle Scholar
  208. [208]
    J.F. Dechézelles, G. Mialon, T. Gacoin, C. Barthou, C. Schwob, A. Maître, R.A.L. Vallée, H. Cramail, S. Ravaine: Inhibition and exaltation of emission in layer-controlled colloidal photonic architectures, Colloids Surf. A 373, 1–5 (2011)CrossRefGoogle Scholar
  209. [209]
    A. Deák, B. Bancsi, A.L. Tóth, A.L. Kovács, Z. Hórvölgyi: Complex Langmuir–Blodgett films from silica nanoparticles: An optical spectroscopy study, Colloids Surf. A 278, 10–16 (2006)CrossRefGoogle Scholar
  210. [210]
    S. Reculusa, S. Ravaine: Synthesis of colloidal crystals of controllable thickness through the Langmuir–Blodgett technique, Chem. Mater. 15, 598–605 (2003)CrossRefGoogle Scholar
  211. [211]
    C. Liu, F. Li, L.-P. Ma, H.-M. Cheng: Advanced materials for energy storage, Adv. Mater. 22, E28–E62 (2010)CrossRefGoogle Scholar
  212. [212]
    V. Müller, M. Rasp, J. Rathouský, B. Schütz, M. Niederberger, D. Fattakhova-Rohlfing: Transparent conducting films of antimony-doped tin oxide with uniform mesostructure assembled from preformed nanocrystals, Small 6, 633–637 (2010)CrossRefGoogle Scholar
  213. [213]
    T. Cassagneau, F. Caruso: Conjugated polymer inverse opals for potentiometric biosensing, Adv. Mater. 14, 1837–1841 (2002)CrossRefGoogle Scholar
  214. [214]
    J.-D. Qiu, H.-Z. Peng, R.-P. Liang, M. Xiong: Preparation of three-dimensional ordered macroporous prussian blue film electrode for glucose biosensor application, Electroanalysis 19, 1201–1206 (2007)CrossRefGoogle Scholar
  215. [215]
    X. Chen, Y. Wang, J. Zhou, W. Yan, X. Li, J.-J. Zhu: Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film, Anal. Chem. 80, 2133–2140 (2008)CrossRefGoogle Scholar
  216. [216]
    X. Yang, Y. Jin, Y. Zhu, L. Tang, C. Li: Inverse opal of polyaniline for biosensors prepared by electrochemical and self-assembly techniques, J. Electrochem. Soc. 155, J23–J25 (2008)CrossRefGoogle Scholar
  217. [217]
    J. Zhou, H. Huang, J. Xuan, J. Zhang, J.J. Zhu: Quantum dots electrochemical aptasensor based on three-dimensionally ordered macroporous gold film for the detection of ATP, Biosens. Bioelectron. 26, 834–840 (2010)CrossRefGoogle Scholar
  218. [218]
    M.M. Dimos, G.J. Blanchard: Evaluating the role of Pt and Pd catalyst morphology on electrocatalytic methanol and ethanol oxidation, J. Phys. Chem. C 114, 6019–6026 (2010)CrossRefGoogle Scholar
  219. [219]
    A. Heller: Miniature biofuel cells, Phys. Chem. Chem. Phys. 6, 209–216 (2004)CrossRefGoogle Scholar
  220. [220]
    A. Heller: Potentially implantable miniature batteries, Anal. Bioanal. Chem. 385, 469–473 (2006)CrossRefGoogle Scholar
  221. [221]
    S.T. Singleton, J.J. O’Dea, J. Osteryoung: Analytical utility of cylindrical microelectrodes, Anal. Chem. 61, 1211–1215 (1989)CrossRefGoogle Scholar
  222. [222]
    M.M. Murphy, J.J. O’Dea, J. Osteryoung: Pulse voltammetry at microcylinder electrodes, Anal. Chem. 63, 2743–2750 (1991)CrossRefGoogle Scholar
  223. [223]
    P. Salaün, C.M.G. van den Berg: Voltammetric detection of mercury and copper in seawater using a gold microwire electrode, Anal. Chem. 78, 5052–5060 (2006)CrossRefGoogle Scholar
  224. [224]
    L. Fink, D. Mandler: Thin functionalized films on cylindrical microelectrodes for electrochemical determination of Hg(II), J. Electroanal. Chem. 649, 153–158 (2010)CrossRefGoogle Scholar
  225. [225]
    J. Wang, N. Foster, S. Armalis, D. Larson, A. Zirino, K. Olsen: Remote stripping electrode for in situ monitoring of labile copper in the marine environment, Anal. Chim. Acta 310, 223–231 (1995)CrossRefGoogle Scholar
  226. [226]
    H. Huiliang, D. Jagner, L. Renman: Flow potentiometric and constant-current stripping analysis for mercury(II) with gold, platinum and carbon fibre working electrodes: Application to the analysis of tap water, Anal. Chim. Acta 201, 1–9 (1987)CrossRefGoogle Scholar
  227. [227]
    J.H. Moon, S. Kim, G.-R. Yi, Y.-H. Lee, S.-M. Yang: Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries, Langmuir 20, 2033–2035 (2004)CrossRefGoogle Scholar
  228. [228]
    S. Hu, Y. Men, S.V. Roth, R. Gehrke, J. Rieger: Facile preparation of macroscopic soft colloidal crystals with fiber symmetry, Langmuir 24, 1617–1620 (2008)CrossRefGoogle Scholar
  229. [229]
    J.H. Song, I. Kretzschmar: Colloid-templated multisectional porous polymeric fibers, Langmuir 24, 10616–10620 (2008)CrossRefGoogle Scholar
  230. [230]
    J.H. Moon, G.-R. Yi, S.-M. Yang: Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas, J. Colloid Interface Sci. 287, 173 (2005)CrossRefGoogle Scholar
  231. [231]
    C.H. Lai, Y.J. Huang, P.W. Wu, L.Y. Chen: Rapid fabrication of cylindrical colloidal crystals and their inverse opals, J. Electrochem. Soc. 157, 23–27 (2010)CrossRefGoogle Scholar
  232. [232]
    S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, A. Kuhn: Design of catalytically active cylindrical and macroporous gold microelectrodes, Adv. Funct. Mater. 21, 691–698 (2011)CrossRefGoogle Scholar
  233. [233]
    R. Zeis, T. Lei, K. Sieradzki, J. Snyder, J. Erlebacher: Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, J. Catal. 253, 132–138 (2008)CrossRefGoogle Scholar
  234. [234]
    L. Deng, F. Wang, H. Chen, L. Shang, L. Wang, T. Wang, S. Dong: A biofuel cell with enhanced performance by multilayer biocatalyst immobilized on highly ordered macroporous electrode, Biosens. Bioelectron. 24, 329–333 (2008)CrossRefGoogle Scholar
  235. [235]
    A. Zebda, L. Renaud, M. Cretin, F. Pichot, C. Innocent, R. Ferrigno, S. Tingry: A microfluidic glucose biofuel cell to generate micropower from enzymes at ambient temperature, Electrochem. Commun. 11, 592–595 (2009)CrossRefGoogle Scholar
  236. [236]
    H.-J. Liu, W.-J. Cui, L.-H. Jin, C.-X. Wang, Y.-Y. Xia: Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors, J. Mater. Chem. 19, 3661–3667 (2009)CrossRefGoogle Scholar
  237. [237]
    M. Nakayama, T. Kanaya, R. Inoue: Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor, Electrochem. Commun. 9, 1154–1158 (2007)CrossRefGoogle Scholar
  238. [238]
    J.-H. Kim, S.H. Kang, K. Zhu, J.Y. Kim, N.R. Neale, A.J. Frank: Ni-NiO core-shell inverse opal electrodes for supercapacitors, Chem. Commun. 47, 5214–5216 (2011)CrossRefGoogle Scholar
  239. [239]
    S.-W. Woo, K. Dokko, H. Nakano, K. Kanamura: Incorporation of polyaniline into macropores of three-dimensionally ordered macroporous carbon electrode for electrochemical capacitors, J. Power Sources 190, 596–600 (2009)CrossRefGoogle Scholar
  240. [240]
    N.S. Ergang, J.C. Lytle, K.T. Lee, S.M. Oh, W.H. Smyrl, A. Stein: Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system, Adv. Mater. 18, 1750–1753 (2006)CrossRefGoogle Scholar
  241. [241]
    N.S. Ergang, M.A. Fierke, Z. Wang, W.H. Smyrl, A. Stein: Fabrication of a fully infiltrated three-dimensional solid-state interpenetrating electrochemical cell, J. Electrochem. Soc. 154, A1135–A1139 (2007)CrossRefGoogle Scholar
  242. [242]
    S. Ben-Ali, D.A. Cook, P.N. Bartlett, A. Kuhn: Bioelectrocatalysis with modified highly ordered macroporous electrodes, J. Electroanal. Chem. 579, 181–187 (2005)CrossRefGoogle Scholar
  243. [243]
    Y. Bon Saint Côme, H. Lalo, Z. Wang, M. Etienne, J. Gajdzik, G.-W. Kohring, A. Walcarius, R. Hempelmann, A. Kuhn: Multiscale-tailored bioelectrode surfaces for optimized catalytic conversion efficiency, Langmuir 27(20), 12737–12744 (2011)CrossRefGoogle Scholar
  244. [244]
    M. Heim, B. Yvert, A. Kuhn: Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation, J. Physiol. Paris 106, 137–145 (2012)CrossRefGoogle Scholar
  245. [245]
    M. Heim, L. Rousseau, S. Reculusa, V. Urbanova, C. Mazzocco, S. Joucla, L. Bouffier, K. Vytras, P. Bartlett, A. Kuhn, B. Yvert: Combined macro/mesoporous microelectrode arrays (MEAs) for low noise extracellular recording of neural networks, J. Neurophysiol. 15, 1793–1803 (2012)CrossRefGoogle Scholar
  246. [246]
    V. Urbanová, Y. Li, K. Vytras, B. Yvert, A. Kuhn: Macroporous microelectrode arrays for measurements with reduced noise, J. Electroanal. Chem. 656, 91–95 (2011)CrossRefGoogle Scholar
  247. [247]
    P. Kornberger, F. Giffhorn, G.W. Kohring: Dehydrogenases, electrochemical cofactor regeneration. In: Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology, Vol. 3, ed. by M.C. Flickinger (Wiley, Hoboken 2010) p. 1888Google Scholar
  248. [248]
    R. Wichmann, D. Vasic-Racki: Cofactor regeneration at the lab scale, Adv. Biochem. Eng. 92, 225–260 (2005)Google Scholar
  249. [249]
    C. Kohlmann, W. Märkle, S. Lätz: Electroenzymatic synthesis, J. Mol. Catal. B 51, 57–72 (2008)CrossRefGoogle Scholar
  250. [250]
    S. Gaspar, H. Zimmermann, I. Gazaryan, E. Csöregi, W. Schuhmann: Hydrogen peroxide biosensors based on direct electron transfer from plant peroxidases immobilized on self-assembled thiol-monolayer modified gold electrodes, Electroanalysis 13, 284–288 (2001)CrossRefGoogle Scholar
  251. [251]
    S. Cosnier, M. Holzinger: Electrosynthesized polymers for biosensing, Chem. Soc. Rev. 40, 2146–2156 (2011)CrossRefGoogle Scholar
  252. [252]
    D. Avnir, T. Coradin, O. Lev, J. Livage: Recent bio-applications of sol-gel materials, J. Mater. Chem. 16, 1013–1030 (2006)CrossRefGoogle Scholar
  253. [253]
    F. Qu, R. Nasraoui, M. Etienne, Y.B.S. Côme, A. Kuhn, J. Lenz, J. Gajdzik, R. Hempelmann, A. Walcarius: Electrogeneration of ultra-thin silica films for the functionalization of macroporous electrodes, Electrochem. Commun. 13, 138–142 (2011)CrossRefGoogle Scholar
  254. [254]
    Z. Wang, M. Etienne, G.-W. Kohring, Y. Bon-Saint-Côme, A. Kuhn, A. Walcarius: Electrochemically assisted deposition of sol–gel bio-composite with co-immobilized dehydrogenase and diaphorase, Electrochim. Acta 56, 9032–9040 (2011)CrossRefGoogle Scholar
  255. [255]
    Y. Bon Saint Côme, H. Lalo, Z. Wang, M. Etienne, J. Gajdzik, G.-W. Kohring, A. Walcarius, R. Hempelmann, A. Kuhn: Multiscale-tailored bioelectrode surfaces for optimized catalytic conversion efficiency, Langmuir 27(2999), 12737–12744 (2011)CrossRefGoogle Scholar
  256. [256]
    J. Ge, Y. Yin: Responsive photonic crystals, Angew. Chem. Int. Ed. 50, 1492–1522 (2011)CrossRefGoogle Scholar
  257. [257]
    Y. Takeoka, M. Watanabe: Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions, Langmuir 19, 9104–9106 (2003)CrossRefGoogle Scholar
  258. [258]
    J.M. Weissman, H.B. Sunkara, A.S. Tse, S.A. Asher: Thermally switchable periodicities and diffraction from mesoscopically ordered materials, Science 274, 959–963 (1996)CrossRefGoogle Scholar
  259. [259]
    N. Griffete, H. Frederich, A. Maitre, M.M. Chehimi, S. Ravaine, C. Mangeney: Photonic crystal pH sensor containing a planar defect for fast and enhanced response, J. Mater. Chem. 21, 13052–13055 (2011)CrossRefGoogle Scholar
  260. [260]
    J. Zhou, C.Q. Sun, K. Pita, Y.L. Lam, Y. Zhou, S.L. Ng, C.H. Kam, L.T. Li, Z.L. Gui: Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3, Appl. Phys. Lett. 78, 661–663 (2001)CrossRefGoogle Scholar
  261. [261]
    J. Shin, P.V. Braun, W. Lee: Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal, Sens. Actuators B 150, 183–190 (2010)CrossRefGoogle Scholar
  262. [262]
    D. Nakayama, Y. Takeoka, M. Watanabe, K. Kataoka: Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique, Angew. Chem. Int. Ed. 42, 4197–4200 (2003)CrossRefGoogle Scholar
  263. [263]
    A.C. Arsenault, V. Kitaev, I. Manners, G.A. Ozin, A. Mihi, H. Miguez: Vapor swellable colloidal photonic crystals with pressure tunability, J. Mater. Chem. 15, 133–138 (2005)CrossRefGoogle Scholar
  264. [264]
    E. Tian, J. Wang, Y. Zheng, Y. Song, L. Jiang, D. Zhu: Colorful humidity sensitive photonic crystal hydrogel, J. Mater. Chem. 18, 1116–1122 (2008)CrossRefGoogle Scholar
  265. [265]
    K.-U. Jeong, J.-H. Jang, C.Y. Koh, M.J. Graham, K.-Y. Jin, S.-J. Park, C. Nah, M.-H. Lee, S.Z.D. Cheng, E.L. Thomas: Colour-tunable spiral photonic actuators, J. Mater. Chem. 19, 1956–1959 (2009)CrossRefGoogle Scholar
  266. [266]
    J.H. Holtz, S.A. Asher: Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 389, 829–832 (1997)CrossRefGoogle Scholar
  267. [267]
    K. Lee, S.A. Asher: Photonic crystal chemical sensors: pH and ionic strength, J. Am. Chem. Soc. 122, 9534–9537 (2000)CrossRefGoogle Scholar
  268. [268]
    J.H. Holtz, J.S.W. Holtz, C.H. Munro, S.A. Asher: Intelligent polymerized crystalline colloidal arrays: Novel chemical sensor materials, Anal. Chem. 70, 780–791 (1998)CrossRefGoogle Scholar
  269. [269]
    V.L. Alexeev, A.C. Sharma, A.V. Goponenko, S. Das, I.K. Lednev, C.S. Wilcox, D.N. Finegold, S.A. Asher: High ionic strength glucose-sensing photonic crystal, Anal. Chem. 75, 2316–2323 (2003)CrossRefGoogle Scholar
  270. [270]
    Y.-J. Lee, S.A. Pruzinsky, P.V. Braun: Glucose-sensitive inverse opal hydrogels: Analysis of optical diffraction response, Langmuir 20, 3096–3106 (2004)CrossRefGoogle Scholar
  271. [271]
    K. Sumioka, H. Kayashima, T. Tsutsui: Tuning the optical properties of inverse opal photonic crystals by deformation, Adv. Mater. 14, 1284–1286 (2002)CrossRefGoogle Scholar
  272. [272]
    S.H. Foulger, P. Jiang, A. Lattam, D.W. Smith, J. Ballato, D.E. Dausch, S. Grego, B.R. Stoner: Photonic crystal composites with reversible high-frequency stop band shifts, Adv. Mater. 15, 685–689 (2003)CrossRefGoogle Scholar
  273. [273]
    A.C. Arsenault, T.J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R.Z. Wang, S. John, D. Wiersma, G.A. Ozin: From colour fingerprinting to the control of photoluminescence in elastic photonic crystals, Nat. Mater. 5, 179–184 (2006)CrossRefGoogle Scholar
  274. [274]
    G.A. Ozin, A.C. Arsenault: P-Ink and Elast-Ink from lab to market, Mater. Today 11, 44–51 (2008)CrossRefGoogle Scholar
  275. [275]
    J.R. Lawrence, Y. Ying, P. Jiang, S.H. Foulger: Dynamic tuning of organic lasers with colloidal crystals, Adv. Mater. 18, 300–303 (2006)CrossRefGoogle Scholar
  276. [276]
    B. Li, J. Zhou, L. Li, X.J. Wang, X.H. Liu, J. Zi: Ferroelectric inverse opals with electrically tunable photonic band gap, Appl. Phys. Lett. 83, 4704–4706 (2003)CrossRefGoogle Scholar
  277. [277]
    A.C. Arsenault, D.P. Puzzo, I. Manners, G.A. Ozin: Photonic-crystal full-colour displays, Nat. Photonics 1, 468–472 (2007)CrossRefGoogle Scholar
  278. [278]
    J. Ge, Y. Hu, Y. Yin: Highly tunable superparamagnetic colloidal photonic crystals, Angew. Chem. Int. Ed. 46, 7428–7431 (2007)CrossRefGoogle Scholar
  279. [279]
    J. Ge, Y. Yin: Magnetically tunable colloidal photonic structures in alkanol solutions, Adv. Mater. 20, 3485–3491 (2008)CrossRefGoogle Scholar
  280. [280]
    D.M. Kuncicky, B.G. Prevo, O.D. Velev: Controlled assembly of SERS substrates templated by colloidal crystal films, J. Mater. Chem. 16, 1207–1211 (2006)CrossRefGoogle Scholar
  281. [281]
    M.E. Abdelsalam, P.N. Bartlett, T. Kelf, J. Baumberg: Wetting of regularly structured gold surfaces, Langmuir 21, 1753–1757 (2005)CrossRefGoogle Scholar
  282. [282]
    S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein, J. van de Lagemaat, A.J. Frank: Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals, J. Am. Chem. Soc. 125, 6306–6310 (2003)CrossRefGoogle Scholar
  283. [283]
    L.I. Halaoui, N.M. Abrams, T.E. Mallouk: Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals, J. Phys. Chem. B 109, 6334–6342 (2005)CrossRefGoogle Scholar
  284. [284]
    S. Guldin, S. Hüttner, M. Kolle, M.E. Welland, P. Müller-Buschbaum, R.H. Friend, U. Steiner, N. Tetreault: Dye-sensitized solar cell based on a three-dimensional photonic crystal, Nano Lett. 10, 2303–2309 (2010)CrossRefGoogle Scholar
  285. [285]
    A. Mihi, H. Miguez: Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells, J. Phys. Chem. B 109, 15968–15976 (2005)CrossRefGoogle Scholar
  286. [286]
    H.A. Atwater, A. Polman: Plasmonics for improved photovoltaic devices, Nat. Mater. 9, 205–213 (2010)CrossRefGoogle Scholar
  287. [287]
    R.M. Cole, J.J. Baumberg, F.J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, P.N. Bartlett: Understanding plasmons in nanoscale voids, Nano Lett. 7, 2094–2100 (2007)CrossRefGoogle Scholar
  288. [288]
    P.M. Tessier, O.D. Velev, A.T. Kalambur, J.F. Rabolt, A.M. Lenhoff, E.W. Kaler: Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy, J. Am. Chem. Soc. 122, 9554–9555 (2000)CrossRefGoogle Scholar
  289. [289]
    S. Mahajan, J. Richardson, T. Brown, P.N. Bartlett: SERS-Melting: A new method for discriminating mutations in DNA sequences, J. Am. Chem. Soc. 130, 15589–15601 (2008)CrossRefGoogle Scholar
  290. [290]
    D.K. Corrigan, N. Gale, T. Brown, P.N. Bartlett: Analysis of short tandem repeats by using SERS monitoring and electrochemical melting, Angew. Chem. Int. Ed. 49, 5917–5920 (2010)CrossRefGoogle Scholar
  291. [291]
    M. Zamuner, D. Talaga, F. Deiss, V. Guieu, A. Kuhn, P. Ugo, N. Sojic: Fabrication of a macroporous microwell array for surface-enhanced Raman scattering, Adv. Funct. Mater. 19, 3129–3135 (2009)CrossRefGoogle Scholar
  292. [292]
    T.V. Teperik, F.J. Garcia de Abajo, A.G. Borisov, M. Abdelsalam, P.N. Bartlett, Y. Sugawara, J.J. Baumberg: Omnidirectional absorption in nanostructured metal surfaces, Nat. Photonics 2, 299–301 (2008)CrossRefGoogle Scholar
  293. [293]
    B. Gates, Y. Yin, Y. Xia: Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures, Chem. Mater. 11, 2827–2836 (1999)CrossRefGoogle Scholar
  294. [294]
    X. Wang, S.M. Husson, X. Qian, S.R. Wickramasinghe: Inverse colloidal crystal microfiltration membranes, J. Membr. Sci. 365, 302–310 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alexander Kuhn
    • 1
  • Matthias Heim
    • 2
  1. 1.Ecole Nationale Supérieure de Chimie, Biologie et PhysiqueUniversité de BordeauxPessacFrance
  2. 2.BMZ GmbHKarlsteinGermany

Personalised recommendations