Modern Fuel Cell Testing Laboratory

  • Jean St-Pierre
  • Michael Angelo
  • Keith Bethune
  • Jack Huizingh
  • Tatyana Reshetenko
  • Mebs Virji
  • Yunfeng Zhai
Part of the Springer Handbooks book series (SHB)


Elements constituting a fuel cell laboratory are succinctly discussed using the experience developed at the Hawaii Sustainable Energy Research Facility. The information is expected to be useful to organizations with a desire to create or improve a fuel cell laboratory in view of the recent and anticipated fuel cell commercialization activities. Topics discussed cover a wide range with an emphasis on differentiating aspects from other types of laboratories including safety, fuel cell and test equipment, and methods used to characterize fuel cells. The use of hydrogen, oxygen and specifically introduced chemical species, and the presence of high voltages and electrical short risks constitute the most prominent hazards. Reactant purity, cleaning, test station control including data acquisition, and calibration are the most important considerations to ensure fuel cell characterization data quality. Cleanliness is also an important consideration for the fuel cell assembly and integration into the test station. The fuel cell assembly also needs to be verified for faults. Fuel cells need to be conditioned for optimum performance before a purposefully designed test plan is implemented. Many fuel cell diagnostic methods are available but novel techniques are still needed in many areas including through plane temperature distribution, stack diagnostics and mass transfer properties. The emphasis is given to commonly and sparingly used electrochemical techniques. In situ techniques include polarization, impedance spectroscopy, voltammetry and current distribution over the active area. Ex situ techniques include the rotating ring-disc electrode and the membrane conductivity cell. Other nonelectrochemical techniques are also useful to understand fuel cell behavior and include the analysis of reactant streams and condensed water, and spectroscopic measurements in combination with electrochemical cells (spectroelectrochemical cells).


Fuel Cell Oxygen Reduction Reaction Bipolar Plate Fuel Cell Performance Fuel Cell Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

atomic force microscopy


American Society for Testing and Materials International




catalyst coated membrane


counter electrode


constant phase element


cyclic voltammetry


differential scanning calorimetry


electrochemical active surface area


energy dispersive x-ray analysis spectrometer


equivalent electrical circuit


electrochemical impedance spectroscopy


environmental scanning electron microscopy


extended x-ray absorption fine structure


fuel cell


frequency response analyzer


Fourier-transform infrared


gas diffusion electrode


gas diffusion layer


hydrogen oxidation reaction


linear sweep voltammetry


low temperature


membrane–electrode assembly


mercury intrusion porosimetry


material safety data sheet


open circuit voltage


oxygen reduction reaction


proton-exchange membrane fuel cell


x-ray radial electron density distribution


reference electrode


rotating ring-disc electrode


small angle x-ray scattering


scanning electron microscopy


solid oxide fuel cell


scanning tunneling microscopy


transmission electron microscopy


thermogravimetric analysis


wavelength dispersive x-ray spectrometer


working electrode


x-ray absorption near-edge spectroscopy


x-ray photoelectron spectroscopy


x-ray diffraction


  1. [1]
    Breakthrough Technologies Inst. Inc.: 2011 Fuel Cell Technologies Market Report, DOE/EE 0755 (United States Department of Energy, Washington 2012) Google Scholar
  2. [2]
    J. Köhler, M. Wietschel, L. Whitmarsh, D. Keles, W. Schade: Infrastructure investment for a transition to hydrogen automobiles, Technol. Forecast. Soc. Change 77, 1237–1248 (2010)CrossRefGoogle Scholar
  3. [3]
    Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu: Electrochemical energy storage for green grid, Chem. Rev. 111, 3577–3613 (2011)CrossRefGoogle Scholar
  4. [4]
    N. Maximova, O. Dahl: A set up of a modern analytical laboratory for wastewaters from pulp and paper industry, Chem. Soc. Rev. 36, 1323–1349 (2007)CrossRefGoogle Scholar
  5. [5]
    M.J. D’Amato, K.W. Lux, K.A. Walz, H. Walter Kerby, B. Anderegg: Introducing new learning tools into a standard classroom: A multi-tool approach to integrating fuel-cell concepts into introductory college chemistry, J. Chem. Educ. 84, 248–252 (2007)CrossRefGoogle Scholar
  6. [6]
    M. Shirkhanzadeh: Thin-layer fuel cell for teaching and classroom demonstrations, J. Chem. Educ. 86, 324–329 (2009)CrossRefGoogle Scholar
  7. [7]
    P. Lunghi, S. Ubertini: First steps towards fuel cells testing harmonisation: Procedures and parameters for single cell performance evaluation, Fuel Cells 3, 208–219 (2004)CrossRefGoogle Scholar
  8. [8]
    R. Cuccaro, M. Lucariello, A. Battaglia, A. Graizzaro: Research of a HySyLab internal standard procedure for single PEMFC, Int. J. Hydrog. Energy 33, 3159–3166 (2008)CrossRefGoogle Scholar
  9. [9]
    T. Malkow, A. Saturnio, A. Pilenga, G. De Marco, M. Honselaar, G. Tsotridis: Assessment of PEFC performance by applying harmonized testing procedure, Int. J. Energy Res. 35, 1075–1089 (2011)CrossRefGoogle Scholar
  10. [10]
    G. De Moor, C. Bas, F. Lesage, A. Sophie Danérol, E. Claude, E. Rossinot, M. Paris, L. Flandin, N. Dominique Albérola: Understanding the degradation of MEA in PEMFC: Definition of structural markers and comparison between laboratory and on-site ageing, J. Appl. Polym. Sci. 120, 3501–3510 (2011)CrossRefGoogle Scholar
  11. [11]
    J. St-Pierre: PEMFC in-situ liquid-water-content monitoring status, J. Electrochem. Soc. 154, B724–B731 (2007)CrossRefGoogle Scholar
  12. [12]
    S.A. Freunberger, M. Reum, J. Evertz, A. Wokaun, F.N. Büchi: Measuring the current distribution in PEFCs with sub-millimeter resolution I. methodology, J. Electrochem. Soc. 153, A2158–A2165 (2006)CrossRefGoogle Scholar
  13. [13]
    J. St-Pierre: PEMFC contamination model: Foreign cation exchange with ionomer protons, J. Power Sources 196, 6274–6283 (2011)CrossRefGoogle Scholar
  14. [14]
    J. St-Pierre: PEMFC contaminant tolerance limit-foreign cations in ionomers, Int. J. Hydrog. Energy 36, 5527–5535 (2011)CrossRefGoogle Scholar
  15. [15]
    A.M. Sapienza: Managing Scientists: Leadership Strategies in Scientific Research, 2nd edn. (Wiley-Liss, Hoboken 2004) pp. 31–33CrossRefGoogle Scholar
  16. [16]
    M. Reijalt: Hydrogen and fuel cell education in Europe: From when? and where? to here! and now!, J. Clean. Prod. 18, S112–S117 (2010)CrossRefGoogle Scholar
  17. [17]
  18. [18]
    J. Glassey, S. Haile: Sustainability in chemical engineering curriculum, Int. J. Sustain. High. Educ. 13, 354–364 (2012)CrossRefGoogle Scholar
  19. [19]
    L. Diener: Selected online resources for teaching about alternative energy, J. Chem. Educ. 89, 950–952 (2012)CrossRefGoogle Scholar
  20. [20]
    R. Wünschiers, P. Lindblad: Hydrogen in education – A biological approach, Int. J. Hydrog. Energy 27, 1131–1140 (2002)CrossRefGoogle Scholar
  21. [21]
    B. Briggs, T. Mitton, R. Smith, T. Magnuson: Teaching cellular respiration and alternate energy sources with a laboratory exercise developed by a scientist-teacher partnership, Am. Biol. Teach. 71, 164–167 (2009)CrossRefGoogle Scholar
  22. [22]
    A. Serov, C. Kwak: Direct hydrazine fuel cells: A review, Appl. Catal. B 98, 1–9 (2010)CrossRefGoogle Scholar
  23. [23]
    A. Serov, C. Kwak: Progress in development of direct dimethyl ether fuel cells, Appl. Catal. B 91, 1–10 (2009)CrossRefGoogle Scholar
  24. [24]
    F. Yang, K. Cheng, X. Liu, S. Chang, J. Yin, C. Du, L. Du, G. Wang, D. Cao: Direct peroxide-peroxide fuel cell – Part 2: Effects of conditions on the performance, J. Power Sources 217, 569–573 (2012)CrossRefGoogle Scholar
  25. [25]
    J. Ma, N.A. Choudhury, Y. Sahai: A comprehensive review of direct borohydride fuel cells, Renew. Sustain. Energy Rev. 14, 183–199 (2010)CrossRefGoogle Scholar
  26. [26]
    G.R. Astbury: A review of the properties and hazards of some alternative fuels, Process Saf. Environ. Prot. 86, 397–414 (2008)CrossRefGoogle Scholar
  27. [27]
    Compressed Gas Association: Handbook of Compressed Gases, 4th edn. (Springer, Berlin, Heidelberg 1999)CrossRefGoogle Scholar
  28. [28]
    C.H. Rivkin (Ed.): The NFPA Guide to Gas Safety (National Fire Protection Association, Quincy 2005)Google Scholar
  29. [29]
    Y.W. Rho, S. Srinivasan, Y.T. Kho: Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar, and O2/N2 mixtures II: Theoretical analysis, J. Electrochem. Soc. 141, 2089–2096 (1994)CrossRefGoogle Scholar
  30. [30]
    T.V. Reshetenko, G. Bender, K. Bethune, R. Rocheleau: Systematic study of back pressure and anode stoichiometry effects on spatial PEMFC performance distribution, Electrochimica Acta 56, 8700–8710 (2011)CrossRefGoogle Scholar
  31. [31]
    H.D. Beeson, S.R. Smith, W.F. Stewart (Eds.): Safe Use of Oxygen and Oxygen Systems: Handbook for Design, Operation, and Maintenance, 2nd edn. (ASTM Intl., West Conshohocken 2007)Google Scholar
  32. [32]
    D.K. Berry: Air toxics in the United States – Magnitude of the problem and strategy for control, Toxicol. Ind. Health 6, 1–12 (1990)CrossRefGoogle Scholar
  33. [33]
    P.M. Lemieux, C.C. Lutes, D.A. Santoianni: Emissions of organic air toxics from open burning: A comprehensive review, Prog. Energy Combust. Sci. 30, 1–32 (2004)CrossRefGoogle Scholar
  34. [34]
    G.M. Woodall, R.L. Smith: The air toxics health effects database (ATHED), Toxicol. Appl. Pharmacol. 233, 20–24 (2008)CrossRefGoogle Scholar
  35. [35]
    J. St-Pierre, M.S. Angelo, Y. Zhai: Focusing research by developing performance related selection criteria for PEMFC contaminants, Electrochem. Soc. Trans. 41(1), 279–286 (2011)Google Scholar
  36. [36]
    R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-I. Kimijima, N. Iwashita: Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev. 107, 3904–3951 (2007)CrossRefGoogle Scholar
  37. [37]
    C.S. Macomber, J. Christ, H. Wang, B. Pivovar, H.N. Dinh: Characterizing leachant contaminants from fuel cell assembly aids, a prelude to effects on performance, Electrochem. Soc. Trans. 50(2), 603–618 (2012)Google Scholar
  38. [38]
    J. Diep, D. Kiel, J. St-Pierre, A. Wong: Development of a residence time distribution method for proton exchange membrane fuel cell evaluation, Chem. Eng. Sci. 62, 846–857 (2007)CrossRefGoogle Scholar
  39. [39]
    J. St-Pierre, A. Wong, J. Diep, D. Kiel: Demonstration of a residence time distribution method for proton exchange membrane fuel cell evaluation, J. Power Sources 164, 196–202 (2007)CrossRefGoogle Scholar
  40. [40]
    H.S. Fogler: Elements of Chemical Reaction Engineering, 4th edn. (Prentice Hall, Upper Saddle River 2006) p. 871Google Scholar
  41. [41]
    D. Roberts: 50-V shock hazard threshold, IEEE Trans. Ind. Appl. 46, 102–107 (2010)CrossRefGoogle Scholar
  42. [42]
    T.B. Reddy (Ed.): Linden’s Handbook of Batteries, 4th edn. (McGraw-Hill, New York 2011), Chap. 5Google Scholar
  43. [43]
    S. Kreitmeier, M. Michiardi, A. Wokaun, F.N. Büchi: Factors determining the gas crossover through pinholes in polymer electrolyte fuel cell membranes, Electrochimica Acta 80, 240–247 (2012)CrossRefGoogle Scholar
  44. [44]
    A.Z. Weber: Gas-crossover and membrane-pinhole effects in polymer-electrolyte fuel cells, J. Electrochem. Soc. 155, B521–B531 (2008)CrossRefGoogle Scholar
  45. [45]
    J. Zhang, J. Lee: A review on prognostics and health monitoring of Li-ion battery, J. Power Sources 196, 6007–6014 (2011)CrossRefGoogle Scholar
  46. [46]
    J. St-Pierre: Air impurities. In: Polymer Electrolyte Fuel Cell Durability, ed. by F.N. Büchi, M. Inaba, T.J. Schmidt (Springer, Berlin, Heidelberg 2009) pp. 289–321CrossRefGoogle Scholar
  47. [47]
    K. Promislow, J. St-Pierre, B. Wetton: A simple, analytic model of polymer electrolyte membrane fuel cell anode recirculation at operating power including nitrogen crossover, J. Power Sources 196, 10050–10056 (2011)CrossRefGoogle Scholar
  48. [48]
    G. Randolf, R.M. Moore: Test system design for hardware-in-loop evaluation of PEM fuel cells and auxiliaries, J. Power Sources 158, 392–396 (2005)CrossRefGoogle Scholar
  49. [49]
    R.M. Moore, K.H. Hauer, G. Randolf, M. Virji: Fuel cell hardware-in-loop, J. Power Sources 162, 302–308 (2006)CrossRefGoogle Scholar
  50. [50]
    D. Stolten, T. Grube (Eds.): 18th World Hydrogen Energy Conference–WHEC 2010, Parallel Sessions Book 6: Stationary Applications/Transportation Applications (Forchungszentrum Jülich, Jülich 2010) pp. 115–120Google Scholar
  51. [51]
    S. Begot, F. Harel, J.M. Kauffmann: Design and validation of a 2 kW-fuel cell test bench for subfreezing studies, Fuel Cells 8, 23–32 (2008)CrossRefGoogle Scholar
  52. [52]
    T.A. Zawodzinski Jr., C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, S. Gottesfeld: Water uptake by and transport through Nafion 117 membranes, J. Electrochem. Soc. 140, 1041–1047 (1993)CrossRefGoogle Scholar
  53. [53]
    F. Barbir: PEM Fuel Cells: Theory and Practice (Elsevier, Amsterdam 2005) pp. 55–57Google Scholar
  54. [54]
    S. Pischinger, O. Lang: Air-supply components. In: Handbook of Fuel Cells, Vol. 4, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 727–741Google Scholar
  55. [55]
    M.J. Lampinen, M. Fomino: Analysis of free energy and entropy changes for half-cell reactions, J. Electrochem. Soc. 140, 3537–3546 (1993)CrossRefGoogle Scholar
  56. [56]
    J. St-Pierre, J. Roberts, K. Colbow, S. Campbell, A. Nelson: PEMFC operational and design strategies for sub zero environments, J. New Mater. Electrochem. Syst. 8, 163–176 (2005)Google Scholar
  57. [57]
    R. Hanke-Rauschenbach, M. Mangold, K. Sundmacher: Bistable current-voltage characteristics of PEM fuel cells operated with reduced feed stream humidification, J. Electrochem. Soc. 155, B97–B107 (2008)CrossRefGoogle Scholar
  58. [58]
    T. Kadyk, S. Kirsch, R. Hanke-Rauschenbach, K. Sundmacher: Autonomous potential oscillations at the Pt anode of a polymer electrolyte membrane fuel cell under CO poisoning, Electrochimica Acta 56, 10593–10602 (2011)CrossRefGoogle Scholar
  59. [59]
    A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki: Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation, J. Power Sources 130, 42–49 (2004)CrossRefGoogle Scholar
  60. [60]
    Anonymous: Fuel Cell Testing – The NI Way, White Paper 2759 (National Instruments, Austin 2012) Google Scholar
  61. [61]
    J. St-Pierre: Stacks. In: Encyclopedia of Electrochemical Power Sources, Vol. 2, ed. by J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam 2009) pp. 879–889CrossRefGoogle Scholar
  62. [62]
    V. Mehta, J.S. Cooper: Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114, 32–53 (2003)CrossRefGoogle Scholar
  63. [63]
    H. Tawfik, Y. Hung, D. Mahajan: Metal bipolar plates for PEM fuel cell – A review, J. Power Sources 163, 755–767 (2007)CrossRefGoogle Scholar
  64. [64]
    J.H. Nam, M. Kaviany: Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int. J. Heat Mass Transf. 46, 4595–4611 (2003)CrossRefGoogle Scholar
  65. [65]
    G. Lin, T. Van Nguyen: Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC, J. Electrochem. Soc. 152, A1942–A1948 (2005)CrossRefGoogle Scholar
  66. [66]
    J. St-Pierre: Overview performance and operational conditions. In: Encyclopedia of Electrochemical Power Sources, Vol. 2, ed. by J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam 2009) pp. 901–911CrossRefGoogle Scholar
  67. [67]
    S.-Y. Ahn, S.-J. Shin, H.Y. Ha, S.-A. Hong, Y.-C. Lee, T.W. Lim, I.-H. Oh: Performance and lifetime analysis of the kW-class PEMFC stack, J. Power Sources 106, 295–303 (2002)CrossRefGoogle Scholar
  68. [68]
    I. Nazarov, K. Promislow: The impact of membrane constraint on PEM fuel cell water management, J. Electrochem. Soc. 154, B623–B630 (2007)CrossRefGoogle Scholar
  69. [69]
    C.J. Netwall, B.D. Gould, J.A. Rodgers, N.J. Nasello, K.E. Swider-Lyons: Decreasing contact resistance in proton-exchange membrane fuel cells with metal bipolar plates, J. Power Sources 227, 137–144 (2013)CrossRefGoogle Scholar
  70. [70]
    R.K. Jain, H.C. Triandis: Management of Research and Development Organizations: Managing the Unmanageable, 2nd edn. (Wiley, New York 1997)Google Scholar
  71. [71]
    E. Sadeghia, N. Djilali, M. Bahrami: Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 2: Hysteresis effect under cyclic compressive load, J. Power Sources 195, 8104–8109 (2010)CrossRefGoogle Scholar
  72. [72]
    O. Burheim, P.J.S. Vie, J.G. Pharoah, S. Kjelstrup: Ex-situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell, J. Power Sources 195, 249–256 (2010)CrossRefGoogle Scholar
  73. [73]
    M. Hamour, J.P. Garnier, J.C. Grandidier, A. Ouibrahim, S. Martemianov: Thermal-conductivity characterization of gas diffusion layer in proton exchange membrane fuel cells and electrolyzers under mechanical loading, Int. J. Thermophys. 32, 1025–1037 (2011)CrossRefGoogle Scholar
  74. [74]
    R. Zaffou, J.S. Yi, H.R. Kunz, J.M. Fenton: Temperature-driven water transport through membrane electrode assembly of proton exchange membrane fuel cells, Electrochem. Solid-State Lett. 9, A418–A422 (2006)CrossRefGoogle Scholar
  75. [75]
    K. Promislow, J. Stockie, B. Wetton: A sharp interface reduction for multiphase transport in a porous fuel cell electrode, Proc. R. Soc. A 462, 789–816 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    K. Promislow, B. Wetton: A simple, mathematical model of thermal coupling in fuel cell stacks, J. Power Sources 150, 129–135 (2005)CrossRefGoogle Scholar
  77. [77]
    E. Barsoukov, J.R. MacDonald (Eds.): Impedance Spectroscopy: Theory, Experiment and Applications, 2nd edn. (Wiley, New York 2005)Google Scholar
  78. [78]
    M.E. Orazem, B. Tribollet: Electrochemical Impedance Spectroscopy (Wiley, New York 2008)CrossRefGoogle Scholar
  79. [79]
    F.N. Büchi, A. Marek, G.G. Scherer: In-situ membrane resistance measurements in polymer electrolyte fuel cells by fast auxiliary current pulses, J. Electrochem. Soc. 142, 1895–1901 (1995)CrossRefGoogle Scholar
  80. [80]
    R. Mukundan, R.L. Borup: Visualising liquid water in PEM fuel cells using neutron imaging, Fuel Cells 9, 499–505 (2009)CrossRefGoogle Scholar
  81. [81]
    A. Isopo, F. Nobili, V.R. Albertini: Energy dispersive x-ray diffraction applied to laboratory investigation on proton exchange membrane water content in working fuel cells, Fuel Cells 12, 800–808 (2012)CrossRefGoogle Scholar
  82. [82]
    K. Tüber, D. Pócza, C. Hebling: Visualization of water buildup in the cathode of a transparent PEM fuel cell, J. Power Sources 124, 403–414 (2003)CrossRefGoogle Scholar
  83. [83]
    X.G. Yang, F.Y. Zhang, A.L. Lubawy, C.Y. Wang: Visualization of liquid water transport in a PEFC, Electrochem. Solid-State Lett. 7, A408–A411 (2004)CrossRefGoogle Scholar
  84. [84]
    A.P. Young, J. Stumper, S. Knights, E. Gyenge: Ionomer degradation in polymer electrolyte membrane fuel cells, J. Electrochem. Soc. 157, B425–B436 (2010)CrossRefGoogle Scholar
  85. [85]
    G. Bender, M. Angelo, K. Bethune, S. Dorn, T. Thampan, R. Rocheleau: Method using gas chromatography to determine the molar flow balance for proton exchange membrane fuel cells exposed to impurities, J. Power Sources 193, 713–722 (2009)CrossRefGoogle Scholar
  86. [86]
    G.A. Schuler, A. Wokaun, F.N. Büchi: Local online gas analysis in PEFC using tracer gas concepts, J. Power Sources 195, 1647–1656 (2010)CrossRefGoogle Scholar
  87. [87]
    P.J.S. Vie, S. Kjelstrup: Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell, Electrochimica Acta 49, 1069–1077 (2004)CrossRefGoogle Scholar
  88. [88]
    M. Matian, A.J. Marquis, N.P. Brandon: Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells, Int. J. Hydrog. Energy 35, 12308–12316 (2010)CrossRefGoogle Scholar
  89. [89]
    S.S. Kocha, J.D. Yang, J.S. Yi: Characterization of gas crossover and its implications in PEM fuel cells, Am. Inst. Chem. Eng. J. 52, 1916–1925 (2006)CrossRefGoogle Scholar
  90. [90]
    W. Vielstich: Cyclic voltammetry. In: Handbook of Fuel Cells, Vol. 2, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 153–162Google Scholar
  91. [91]
    R.W. Lindström, K. Kortsdottir, M. Wesselmark, A. Oyarce, C. Lagergren, G. Lindbergh: Active area determination of porous Pt electrodes used in polymer electrolyte fuel cells: Temperature and humidity effects, J. Electrochem. Soc. 157, B1795–B1801 (2010)CrossRefGoogle Scholar
  92. [92]
    M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka, Z. Ogumi: Gas crossover and membrane degradation in polymer electrolyte fuel cells, Electrochimica Acta 51, 5746–5753 (2006)CrossRefGoogle Scholar
  93. [93]
    T.V. Reshetenko, J. St-Pierre: PEMFC GDE oxygen mass transport coefficient separation with different gas diluents, Electrochem. Soc. Trans. 50(2), 549–555 (2012)Google Scholar
  94. [94]
    K. Broka, P. Ekdunge: Oxygen and hydrogen permeation properties and water uptake of Nafion 117 membrane and recast film for PEM fuel cell, J. Appl. Electrochem. 27, 117–123 (1997)CrossRefGoogle Scholar
  95. [95]
    K.-H. Choi, D.-H. Peck, C.S. Kim, D.-R. Shin, T.-H. Lee: Water transport in polymer membranes for PEMFC, J. Power Sources 86, 197–201 (2000)CrossRefGoogle Scholar
  96. [96]
    Z. Peng, A. Morin, P. Huguet, P. Schott, J. Pauchet: In-situ measurement of electroosmotic drag coefficient in nafion membrane for the PEMFC, J. Phys. Chem. B 115, 12835–12844 (2011)CrossRefGoogle Scholar
  97. [97]
    B. Wetton, J. St-Pierre: Liquid water scavenging of PEMFC contaminants, Electrochem. Soc. Trans. 50(2), 649–657 (2012)Google Scholar
  98. [98]
    J. St-Pierre: Section preface. In: Device and Materials Modeling in PEM Fuel Cells, ed. by S.J. Paddison, K.S. Promislow (Springer, Berlin, Heidelberg 2009) pp. 3–17CrossRefGoogle Scholar
  99. [99]
    G.-S. Kim, J. St-Pierre, K. Promislow, B. Wetton: Electrical coupling in proton exchange membrane fuel cell stacks, J. Power Sources 152, 210–217 (2005)CrossRefGoogle Scholar
  100. [100]
    P.A.C. Chang, J. St-Pierre, J. Stumper, B. Wetton: Flow distribution in proton exchange membrane fuel cell stacks, J. Power Sources 162, 340–355 (2006)CrossRefGoogle Scholar
  101. [101]
    P. Berg, A. Çağlar, K. Promislow, J. St-Pierre, B. Wetton: Electrical coupling in proton exchange membrane fuel cell stacks: Mathematical and computational modelling, IMA J. Appl. Math. 71, 241–261 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  102. [102]
    X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, J. Yu: Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells, J. Power Sources 79, 75–81 (1999)CrossRefGoogle Scholar
  103. [103]
    Z. Qi, A. Kaufman: Activation of low temperature PEM fuel cells, J. Power Sources 111, 181–184 (2002)CrossRefGoogle Scholar
  104. [104]
    Z. Xu, Z. Qi, A. Kaufman: Activation of proton-exchange membrane fuel cell via CO oxidation stripping, J. Power Sources 156, 281–283 (2006)CrossRefGoogle Scholar
  105. [105]
    H. Tomioka, Y. Hashimasa, N. Yoshimura, M. Akai, S. Watanabe: JARI standard single cell testing protocol, JARI Res. J. 28, 247–252 (2006)Google Scholar
  106. [106]
    Anonymous: Procedure for Performing PEM Single Cell Testing (Florida Solar Energy Center, Cocoa 2009) Google Scholar
  107. [107]
    T. Malkow, G. De Marco, A. Pilenga, M. Honselaar, G. Tsotridis, S. Escribano, L. Antoni, R. Reißner, O. Thalau, E. Sitters, G. Heinz: Testing the Voltage and the Power as a Function of the Current Density Following a Dynamic Profile Versus Time–Dynamic Load Cycling Ageing Test for a PEFC Single Cell, Test Module PEFC SC 5-7 (European Commission Joint Research Centre, Institute for Energy, Petten 2010)Google Scholar
  108. [108]
    G. Bender, M. Angelo, K. Bethune, R. Rocheleau: Quantitative analysis of the performance impact of low-level carbon monoxide exposure in proton exchange membrane fuel cells, J. Power Sources 228, 159–169 (2013)CrossRefGoogle Scholar
  109. [109]
    J. St-Pierre, D.P. Wilkinson, S. Knights, M.L. Bos: Relationships between water management, contamination and lifetime degradation in PEFC, J. New Mater. Electrochem. Syst. 3, 99–106 (2000)Google Scholar
  110. [110]
    J. St-Pierre, N. Jia: Successful demonstration of Ballard PEMFCs for space shuttle applications, J. New Mater. Electrochem. Syst. 5, 263–271 (2002)Google Scholar
  111. [111]
    S.D. Knights, K.M. Colbow, J. St-Pierre, D.P. Wilkinson: Aging mechanisms and lifetime, PEFC and DMFC, J. Power Sources 127, 127–134 (2004)CrossRefGoogle Scholar
  112. [112]
    J. Xie, D.L. Wood, D.M. Wayne, T.A. Zawodzinski, P. Atanassov, R.L. Borup: Durability of PEFCs at high humidity conditions, J. Electrochem. Soc. 152, A104–A113 (2005)CrossRefGoogle Scholar
  113. [113]
    S.J.C. Cleghorn, D.K. Mayfield, D.A. Moore, J.C. Moore, G. Rusch, T.W. Sherman, N.T. Sisofo, U. Beuscher: A polymer electrolyte fuel cell life test: 3 years of continuous operation, J. Power Sources 158, 446–454 (2006)CrossRefGoogle Scholar
  114. [114]
    D. Liu, S. Case: Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile, J. Power Sources 162, 521–531 (2006)CrossRefGoogle Scholar
  115. [115]
    R. Borup, J. Davey, F. Garzon, D. Wood, P. Welch, K. More: PEM fuel cell durability with transportation transient operation, Electrochem. Soc. Trans. 3(1), 879–886 (2006)Google Scholar
  116. [116]
    R. Lin, B. Li, Y.P. Hou, J.M. Ma: Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell, Int. J. Hydrog. Energy 34, 2369–2376 (2009)CrossRefGoogle Scholar
  117. [117]
    B. Li, R. Lin, D. Yang, J. Ma: Effect of driving cycle on the performance of PEM fuel cell and microstructure of membrane electrode assembly, Int. J. Hydrog. Energy 35, 2814–2819 (2010)CrossRefGoogle Scholar
  118. [118]
    X.-Z. Yuan, H. Li, S. Zhang, J. Martin, H. Wang: A review of polymer electrolyte membrane fuel cell durability test protocols, J. Power Sources 196, 9107–9116 (2011)CrossRefGoogle Scholar
  119. [119]
    S.J. Bae, S.-J. Kim, J.I. Park, C.W. Park, J.-H. Lee, I. Song, N. Lee, K.-B. Kim, J.-Y. Park: Lifetime prediction of a polymer electrolyte membrane fuel cell via an accelerated startup-shutdown cycle test, Int. J. Hydrog. Energy 37, 9775–9781 (2012)CrossRefGoogle Scholar
  120. [120]
    T.-C. Jao, G.-B. Jung, S.-C. Kuo, W.-J. Tzeng, A. Su: Degradation mechanism study of PTFE/Nafion membrane in MEA utilizing an accelerated degradation technique, Int. J. Hydrog. Energy 37, 13623–13630 (2012)CrossRefGoogle Scholar
  121. [121]
    T.H. Bradley, B.A. Moffitt, D.N. Mavris, T.F. Fuller, D.E. Parekh: Hardware-in-the-loop testing of a fuel cell aircraft powerplant, J. Propuls. Power 25, 1336–1344 (2009)CrossRefGoogle Scholar
  122. [122]
    H. Schulenburg, J. Durst, E. Müller, A. Wokaun, G.G. Scherer: Real surface area measurements of Pt3Co/C catalysts, J. Electroanal. Chem. 642, 52–60 (2010)CrossRefGoogle Scholar
  123. [123]
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. B 56, 9–35 (2005)CrossRefGoogle Scholar
  124. [124]
    S.S. Kocha: Principles of MEA preparation. In: Handbook of Fuel Cells, Vol. 3, ed. by W. Vielstich, H.A. Gasteiger, A. Lamm (Wiley, New York 2003) pp. 538–565Google Scholar
  125. [125]
    F. Barbir: PEM Fuel Cells: Theory and Practice (Elsevier, Amsterdam 2005) pp. 449–452Google Scholar
  126. [126]
    M.V. Williams, H.R. Kunz, J.M. Fenton: Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells, J. Electrochem. Soc. 152, A635–A644 (2005)CrossRefGoogle Scholar
  127. [127]
    F. Barbir: PEM Fuel Cells: Theory and Practice (Elsevier, Amsterdam 2005) pp. 45–47Google Scholar
  128. [128]
    T.R. Ralph, M.P. Hogarth: Catalysis for low temperature fuel cells Part I: The cathode challenges, Platin. Met. Rev. 46, 3–14 (2002)Google Scholar
  129. [129]
    D.R. Lide (Ed.): CRC Handbook of Chemistry and Physics, 89th edn. (CRC, Boca Raton 2008) p. 6-214Google Scholar
  130. [130]
    K. O’Neil, J.P. Meyers, R.M. Darling, M.L. Perry: Oxygen gain analysis for proton exchange membrane fuel cells, Int. J. Hydrog. Energy 37, 373–382 (2012)CrossRefGoogle Scholar
  131. [131]
    K.C. Neyerlin, W. Gu, J. Jorne, H.A. Gasteiger: Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC, J. Electrochem. Soc. 153, A1955–A1963 (2006)CrossRefGoogle Scholar
  132. [132]
    J. Kim, S.-M. Lee, S. Srinivasan, C.E. Chamberlin: Modeling of proton-exchange membrane fuel-cell performance with an empirical-equation, J. Electrochem. Soc. 142, 2670–2674 (1995)CrossRefGoogle Scholar
  133. [133]
    G. Squadrito, G. Maggio, E. Passalacqua, F. Lufrano, A. Patti: An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour, J. Appl. Electrochem. 29, 1449–1455 (1999)CrossRefGoogle Scholar
  134. [134]
    D. Chu, R. Jiang, C. Walker: Analysis of PEM fuel cell stacks using an empirical current-voltage equation, J. Appl. Electrochem. 30, 365–370 (2000)CrossRefGoogle Scholar
  135. [135]
    L. Pisani, G. Murgia, M. Valentini, B. D’Aguanno: A new semi-empirical approach to performance curves of polymer electrolyte fuel cells, J. Power Sources 108, 192–203 (2002)CrossRefGoogle Scholar
  136. [136]
    A. Bard, L. Faulkner: Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York 2000) pp. 383–388Google Scholar
  137. [137]
    K.R. Cooper, M. Smith: Electrical test methods for on-line fuel cell ohmic resistance measurement, J. Power Sources 160, 1088–1095 (2006)CrossRefGoogle Scholar
  138. [138]
    D. Malevich, E. Halliop, B.A. Peppley, J.G. Pharoah, K. Karan: Investigation of charge-transfer and mass-transport resistances in PEMFCs with microporous layer using electrochemical impedance spectroscopy, J. Electrochem. Soc. 156, B216–B224 (2009)CrossRefGoogle Scholar
  139. [139]
    Y. Zhai, K. Bethune, S. Dorn, G. Bender, R. Rocheleau: Analysis of the SO2 contamination effect on the oxygen reduction reaction in PEMFCs by electrochemical impedance spectroscopy, J. Electrochem. Soc. 159, B524–B530 (2012)CrossRefGoogle Scholar
  140. [140]
    J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet: CPE analysis by local electrochemical impedance spectroscopy, Electrochim. Acta 51, 1473–1479 (2006)CrossRefGoogle Scholar
  141. [141]
    A.J. Bard, L.R. Faulkner: Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York 2001) pp. 239–243Google Scholar
  142. [142]
    J. Wang: Analytical Electrochemistry, 3rd edn. (Wiley, New York 2006)CrossRefGoogle Scholar
  143. [143]
    Y. Sun, Y. Dai, Y. Liu, S. Chen: A rotating disk electrode study of the particle size effects of Pt for the hydrogen oxidation reaction, Phys. Chem. Chem. Phys. 14, 2278–2285 (2012)CrossRefGoogle Scholar
  144. [144]
    R.M. Darling, J.P. Meyers: Kinetic model of platinum dissolution in PEMFCs, J. Electrochem. Soc. 150, A1523–A1527 (2003)CrossRefGoogle Scholar
  145. [145]
    Y. Gu, J. St-Pierre, A. Joly, R. Goeke, A. Datye, P. Atanassov: Aging Studies of Pt/glassy carbon model electrocatalysts, J. Electrochem. Soc. 156, B485–B492 (2009)CrossRefGoogle Scholar
  146. [146]
    H. Xu, R. Kunz, J.M. Fenton: Investigation of platinum oxidation in PEM fuel cells at various relative humidities, Electrochem. Solid-State Lett. 10, B1–B5 (2007)CrossRefGoogle Scholar
  147. [147]
    K.R. Cooper: In-situ PEM fuel cell: Fuel crossover and electrical short circuit measurement, Fuel Cells 8, 34–35 (2008)Google Scholar
  148. [148]
    K.-H. Hauer, R. Potthast, T. Wüster, D. Stolten: Magnetotomography – A new method for analysing fuel cell performance and quality, J. Power Sources 143, 67–74 (2005)CrossRefGoogle Scholar
  149. [149]
    S. Cleghorn, C.R. Derouin, M.S. Wilson, S. Gottesfeld: A printed circuit board approach to measuring current distribution in a fuel cell, J. Appl. Electrochem. 28, 663–672 (1998)CrossRefGoogle Scholar
  150. [150]
    J. Stumper, S.A. Campbell, D.P. Wilkinson, M.C. Johnson, M. Davis: In-situ methods for the determination of current distributions in PEM fuel cells, Electrochimica Acta 43, 3773–3783 (1998)CrossRefGoogle Scholar
  151. [151]
    M. Noponen, T. Mennola, M. Mikkola, T. Hottinen, P. Lund: Measurement of current distribution in a free-breathing PEMFC, J. Power Sources 106, 304–312 (2002)CrossRefGoogle Scholar
  152. [152]
    N. Rajalakshmi, M. Raja, K.S. Dhathathereyan: Evaluation of current distribution in a proton exchange membrane fuel cell by segmented cell approach, J. Power Sources 112, 331–336 (2002)CrossRefGoogle Scholar
  153. [153]
    M.M. Mench, C.Y. Wang: An in-situ method for determination of current distribution in PEM fuel cells applied to a direct methanol fuel cell, J. Electrochem. Soc. 150, A79–A85 (2003)CrossRefGoogle Scholar
  154. [154]
    D.J.L. Brett, S. Atkins, N.P. Brandon, V. Vesivic, N. Vasileiadis, A. Kucernak: Localized impedance measurements along a single channel of a solid polymer fuel cell, Electrochem. Solid-State Lett. 6, A63–A66 (2003)CrossRefGoogle Scholar
  155. [155]
    C. Wieser, A. Helmbold, E. Gülzow: A new technique for two-dimensional current distribution measurements in electrochemical cells, J. Appl. Electrochem. 30, 803–807 (2000)CrossRefGoogle Scholar
  156. [156]
    G. Bender, M.S. Wilson, T.A. Zawodzinski: Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells, J. Power Sources 123, 163–171 (2003)CrossRefGoogle Scholar
  157. [157]
    A.B. Geiger, R. Eckl, A. Wokaun, G.G. Scherer: An approach to measuring locally resolved currents in polymer electrolyte fuel cells, J. Electrochem. Soc. 151, A394–A398 (2004)CrossRefGoogle Scholar
  158. [158]
    A. Hakenjos, C. Hebling: Spatially resolved measurement of PEM fuel cells, J. Power Sources 145, 307–311 (2005)CrossRefGoogle Scholar
  159. [159]
    I.A. Schneider, H. Kuhn, A. Wokaun, G.G. Scherer: Fast locally resolved electrochemical impedance spectroscopy in polymer electrolyte fuel cells, J. Electrochem. Soc. 152, A2092–A2103 (2005)CrossRefGoogle Scholar
  160. [160]
    A. Pozio, R.F. Silva, M. De Francesco, L. Giorgi: Nafion degradation in PEFCs from end plate iron contamination, Electrochimica Acta 48, 1543–1549 (2003)CrossRefGoogle Scholar
  161. [161]
    D.E. Curtin, R.D. Lousenberg, T.J. Henry, P.C. Tangeman, M.E. Tisack: Advanced materials for improved PEMFC performance and life, J. Power Sources 131, 41–48 (2004)CrossRefGoogle Scholar
  162. [162]
    S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten: Carbon support oxidation in PEM fuel cell cathodes, J. Power Sources 176, 444–451 (2008)CrossRefGoogle Scholar
  163. [163]
    H.-S. Oh, J.-G. Oh, S. Haam, K. Arunabha, B. Roh, I. Hwang, H. Kim: On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells, Electrochem. Commun. 10, 1048–1051 (2008)CrossRefGoogle Scholar
  164. [164]
    M.S. Angelo, J. St-Pierre, K.P. Bethune, R.E. Rocheleau: Gas chromatography study of reactions of carbon monoxide at different operating temperatures within a PEMFC, Electrochem. Soc. Trans. 35(32), 167–178 (2011)Google Scholar
  165. [165]
    E.A. Müller, F. Kolb, L. Guzzella, A.G. Stefanopoulou, D.A. McKay: Correlating nitrogen accumulation with temporal fuel cell performance, J. Fuel Cell Sci. Technol. 7, 021013 (2010)CrossRefGoogle Scholar
  166. [166]
    B.S. Pivovar: An overview of electro-osmosis in fuel cell polymer electrolytes, Polymer 47, 4194–4202 (2006)CrossRefGoogle Scholar
  167. [167]
    U. Beuscher: Experimental method to determine the mass transport resistance of a polymer electrolyte fuel cell, J. Electrochem. Soc. 153, A1788–A1793 (2006)CrossRefGoogle Scholar
  168. [168]
    J. St-Pierre, B. Wetton, G.-S. Kim, K. Promislow: Limiting current operation of proton exchange membrane fuel cells, J. Electrochem. Soc. 154, B186–B193 (2007)CrossRefGoogle Scholar
  169. [169]
    D.R. Baker, D.A. Caulk, K.C. Neyerlin, M.W. Murphy: Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods, J. Electrochem. Soc. 156, B991–B1003 (2009)CrossRefGoogle Scholar
  170. [170]
    J. St-Pierre: Hydrogen mass transport in fuel cell gas diffusion electrodes, Fuel Cells 11, 263–273 (2011)CrossRefGoogle Scholar
  171. [171]
    A.J. Bard, L.R. Faulkner: Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York 2001) pp. 335–353Google Scholar
  172. [172]
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons: Impact of sulfur dioxide on the oxygen reduction reaction at Pt/Vulcan carbon electrocatalysts, J. Electrochem. Soc. 154, B670–B675 (2007)CrossRefGoogle Scholar
  173. [173]
    Y. Garsany, O. Baturina, K.E. Swider-Lyons, S.S. Kocha: Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction, Anal. Chem. 82, 6321–6328 (2010)CrossRefGoogle Scholar
  174. [174]
    Y. Garsany, I.L. Singer, K.E. Swider-Lyons: Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts, J. Electroanal. Chem. 662, 396–406 (2011)CrossRefGoogle Scholar
  175. [175]
    D.A. Schiraldi: Perfluorinated polymer electrolyte membrane durability, Polym. Rev. 46, 315–327 (2006)Google Scholar
  176. [176]
    M. Doyle, G. Rajendran: Perfluorinated membranes. In: Handbook of Fuel Cells, Vol. 3, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 351–395Google Scholar
  177. [177]
    K.R. Cooper: Progress toward accurate through-plane ion transport resistance measurement of thin solid electrolytes, J. Electrochem. Soc. 157, B1731–B1739 (2010)CrossRefGoogle Scholar
  178. [178]
    Z. Siroma, T. Ioroi, N. Fujiwara, K. Yasuda: Proton conductivity along interface in thin cast film of Nafion, Electrochem. Commun. 4, 143–145 (2002)CrossRefGoogle Scholar
  179. [179]
    J. Li, K.G. Wilmsmeyer, L.A. Madsen: Anisotropic diffusion and morphology in perfluorosulfonate ionomers investigated by NMR, Macromolecules 42, 255–262 (2009)CrossRefGoogle Scholar
  180. [180]
    G. Velayutham: Effect of micro-layer PTFE on the performance of PEM fuel cell electrodes, Int. J. Hydrog. Energy 36, 14845–14850 (2011)CrossRefGoogle Scholar
  181. [181]
    D.J. Burnett, A.R. Garcia, F. Thielmann: Measuring moisture sorption and diffusion kinetics on proton exchange membranes using a gravimetric vapor sorption apparatus, J. Power Sources 160, 426–430 (2006)CrossRefGoogle Scholar
  182. [182]
    B. Ren, X.-B. Lian, J.-F. Li, P.-P. Fang, Q.-P. Lai, Z.-Q. Tian: Spectroelectrochemical flow cell with temperature control for investigation of electrocatalytic systems with surface-enhanced Raman spectroscopy, Faraday Discuss. 140, 155–165 (2009)CrossRefGoogle Scholar
  183. [183]
    R.J.K. Wiltshire, C.R. King, A. Rose, P.P. Wells, M.P. Hogarth, D. Thompsett, A.E. Russell: PEM fuel cell for in-situ XAS studies, Electrochimica Acta 50, 5208–5217 (2005)CrossRefGoogle Scholar
  184. [184]
    V. Croze, F. Ettingshausen, J. Melke, M. Soehn, D. Stuermer, C. Roth: The use of in-situ X-ray absorption spectroscopy in applied fuel cell research, J. Appl. Electrochem. 40, 877–883 (2010)CrossRefGoogle Scholar
  185. [185]
    M. Heinen, Z. Jusys, R.J. Behm: Ethanol, acetaldehyde and acetic acid adsorption/electrooxidation on a Pt thin film electrode under continuous electrolyte flow: An in-situ ATR-FTIRS flow cell study, J. Phys. Chem. C 114, 9850–9864 (2010)CrossRefGoogle Scholar
  186. [186]
    J.R. Anderson: Structure of Metal Catalysts (Academic, New York 1975)Google Scholar
  187. [187]
    L.A. Kibler, D.M. Kolb: Structure sensitive methods: AFM/STM. In: Handbook of Fuel Cells, Vol. 2, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 266–278Google Scholar
  188. [188]
    R. Alink, D. Gerteisen, W. Mérida: Investigating the water transport in porous media for PEMFCs by liquid water visualization in ESEM, Fuel cells 11, 481–488 (2011)CrossRefGoogle Scholar
  189. [189]
    K.J.J. Mayrhofer, J.C. Meier, S.J. Ashton, G.K.H. Wiberg, F. Kraus, M. Hanzlik, M. Arenz: Fuel cell catalyst degradation on the nanoscale, Electrochem. Commun. 10, 1144–1147 (2008)CrossRefGoogle Scholar
  190. [190]
    Z.Y. Liu, J.L. Zhang, P.T. Yu, J.X. Zhang, R. Makharia, K.L. More, E.A. Stach: Transmission electron microscopy observation of corrosion behaviors of platinized carbon blacks under thermal and electrochemical conditions, J. Electrochem. Soc. 157, B906–B913 (2010)CrossRefGoogle Scholar
  191. [191]
    R.R. Adžić, J.X. Wang, B.M. Ocko, J. McBreen: EXAFS, XANES, SXS. In: Handbook of Fuel Cells, Vol. 2, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 279–301Google Scholar
  192. [192]
    M.F. Mathias, J. Roth, J. Fleming, W. Lehnert: Diffusion media materials and characterisation. In: Handbook of Fuel Cells, Vol. 3, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 517–537Google Scholar
  193. [193]
    N.L. Garland, J.P. Kopasz: The United States Department of Energy’s high temperature, low relative humidity membrane program, J. Power Sources 172, 94–99 (2007)CrossRefGoogle Scholar
  194. [194]
    E.D. Wachsman, K.T. Lee: Lowering the temperature of solid oxide fuel cells, Science 334, 935–939 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jean St-Pierre
    • 1
  • Michael Angelo
    • 1
  • Keith Bethune
    • 1
  • Jack Huizingh
    • 1
  • Tatyana Reshetenko
    • 1
  • Mebs Virji
    • 1
  • Yunfeng Zhai
    • 1
  1. 1.Hawaii Sustainable Energy Research Facility, Hawaii Natural Energy Inst.University of Hawaii – ManoaHonoluluUSA

Personalised recommendations