The Web Within: Leveraging Web Standards and Graph Analysis to Enable Application-Level Integration of Institutional Data

  • Luiz GomesJr.
  • André Santanchè
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8990)


The expansion of the Web and of our capacity of producing and storing information have had a profound impact on the way we organize, manipulate and share data. We have seen an increased specialization of database back-ends and data models to respond to modern application needs: text indexing engines organize unstructured data, standards and models were created to support the Semantic Web, Big Data requirements stimulated an explosion of data representation and manipulation models. This complex and heterogeneous environment demands unified strategies that enable data integration and, especially, cross-application, expressive querying.

Here we present a new approach for the integration of structured and unstructured data within organizations. Our solution is based on the Complex Data Management System (CDMS), a system being developed to handle data typical of complex networks. The CDMS enables a relationship-centric interaction with data that brings many advantages to the institutional data integration scenario, allowing applications to rely on common models for data querying and manipulation.

In our framework, diverse data models are integrated in a unifying RDF graph. A novel query model allows the combination of concepts from information retrieval, databases, and complex networks into a declarative query language that extends SPARQL. This query language enables flexible correlation queries over the unified data, enabling support for a wide range of applications such as CMSs, recommendation systems, social networks, etc. We also introduce Mappers, a data management mechanism that simplifies the integration of heterogeneous data and that is integrated in the query language for further flexibility. Experimental results from real data demonstrate the viability of our approach.


Query model integration Data integration DB/IR Integration Graph data models Graph query languages Complex data 



The authors would like to thank Prof. Frank Wm. Tompa for feedback and encouragement in earlier stages of this work. This work was partially financed by the Microsoft Research FAPESP Virtual Institute (NavScales project), CNPq (MuZOO Project and PRONEX-FAPESP), INCT in Web Science (CNPq 557.128/2009-9) and CAPES, with individual grants from CAPES and FAPESP (process 2012/15988-9).


  1. 1.
    Alves, H., Santanchè, A.: Abstract framework for social ontologies and folksonomized ontologies. In: SWIM. ACM (2012)Google Scholar
  2. 2.
    Amer-Yahia, S., Case, P., Rölleke, T., Shanmugasundaram, J., Weikum, G.: Report on the DB/IR panel. SIGMOD Record 34(4), 71–74 (2005)CrossRefGoogle Scholar
  3. 3.
    Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-weight linked data publication from relational databases. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009 (2009)Google Scholar
  4. 4.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: IJCAI, pp. 2670–2676 (2007)Google Scholar
  5. 5.
    Berners-Lee, T.: Giant global graph. Online posting, 2007.
  6. 6.
    Bizer, C.: D2rq - treating non-rdf databases as virtual rdf graphs. In: Proceedings of the 3rd International Semantic Web Conference (ISWC2004) (2004)Google Scholar
  7. 7.
    Blanco, R., Lioma, C.: Graph-based term weighting for information retrieval. Inf. Retr. 15(1), 54–92 (2012)CrossRefGoogle Scholar
  8. 8.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(4–5), 993–1022 (2003)zbMATHGoogle Scholar
  9. 9.
    Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR technologies: what is the sound of one hand clapping? In: CIDR, pp. 1–12 (2005)Google Scholar
  10. 10.
    Costa, L., Oliveira Jr., O., Travieso, G., Rodrigues, F., Boas, P., Antiqueira, L., Viana, M., Rocha, L.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60, 329–412 (2011)CrossRefGoogle Scholar
  11. 11.
    Costa, L.D.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007)CrossRefGoogle Scholar
  12. 12.
    Crestani, F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997)CrossRefGoogle Scholar
  13. 13.
    Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Web-scale information extraction in KnowItAll. In: WWW, pp. 100, 26 March 2004Google Scholar
  14. 14.
    Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explor. Newsl. 7(2), 3–12 (2005)CrossRefGoogle Scholar
  15. 15.
    Gomes Jr., L., Costa, L., Santanchè, A.: Querying complex data. Technical Report IC-13-27, Institute of Computing, University of Campinas, October 2013Google Scholar
  16. 16.
    Gomes Jr., L., Jensen, R., Santanchè, A.: Query-based inferences in the Complex Data Management System. In: Structured Learning: Inferring Graphs from Structured and Unstructured Inputs (SLG-ICML) (2013)Google Scholar
  17. 17.
    Gomes Jr., L., Jensen, R., Santanchè, A.: Towards query model integration: topology-aware, ir-inspired metrics for declarative graph querying. In: GraphQ-EDBT (2013)Google Scholar
  18. 18.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)Google Scholar
  19. 19.
    Hassanzadeh, O., Consens, M.: Linked movie data base. In: Proceedings of the 2nd Workshop on Linked Data on the Web (LDOW2009) (2009)Google Scholar
  20. 20.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-\(k\) query processing techniques in relational database systems. ACM Comput. Surveys 40(4), 11:1–11:58 (2008)CrossRefGoogle Scholar
  21. 21.
    Imhoff, C., Galemmo, N., Geiger, J.G.: Mastering Data Warehouse Design: Relational and Dimensional Techniques. Wiley, Chichester (2003)Google Scholar
  22. 22.
    Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Kimelfeld, B., Sagiv, Y.: Finding and approximating top-k answers in keyword proximity search. In: PODS (2006)Google Scholar
  24. 24.
    Luo, Y., Wang, W., Lin, X., Zhou, X., Wang, J., Li, K.: SPARK2: Top-k keyword query in relational databases. TKDE 23(12), 1763–1780 (2011)Google Scholar
  25. 25.
    Markovitch, S., Gabrilovich, E.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: IJCAI (2007)Google Scholar
  26. 26.
    Ngonga Ngomo, A.-C., Heino, N., Lyko, K., Speck, R., Kaltenböck, M.: SCMS – Semantifying content management systems. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 189–204. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  27. 27.
    Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. CoRR, abs/1004.1001 (2010)Google Scholar
  28. 28.
    Rodriguez, M.A., Pepe, A., Shinavier, J.: The dilated triple. In: Badr, Y., Chbeir, R., Abraham, A., Hassanien, A.-E. (eds.) Emergent Web Intelligence: Advanced Semantic Technologies, pp. 3–16. Springer, London (2010) CrossRefGoogle Scholar
  29. 29.
    Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261–377 (2008)CrossRefGoogle Scholar
  30. 30.
    Schenk, S., Staab, S.: newblock Networked graphs: a declarative mechanism for SPARQL rules, SPARQL views and RDF data integration on the web. In: WWW (2008)Google Scholar
  31. 31.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: A federation layer for distributed query processing on linked open data. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 481–486. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  32. 32.
    Sheth, A., Larson, J.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surveys 22(3), 183–236 (1990)CrossRefGoogle Scholar
  33. 33.
    Weikum, G., Kasneci, G., Ramanath, M., Suchanek, F.: Database and information-retrieval methods for knowledge discovery. Commun. ACM 52(4), 56–64 (2009)CrossRefGoogle Scholar
  34. 34.
    White, S. Smyth, P.: Algorithms for estimating relative importance in networks. In: SIGKDD (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of ComputingUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations