Theory of Cryptography Conference

TCC 2015: Theory of Cryptography pp 557-585 | Cite as

Adaptively Secure Two-Party Computation from Indistinguishability Obfuscation

  • Ran Canetti
  • Shafi Goldwasser
  • Oxana Poburinnaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9015)

Abstract

We present the first two-round, two-party general function evaluation protocol that is secure against honest-but-curious adaptive corruption of both parties. In addition, the protocol is incoercible for one of the parties, and fully leakage tolerant. It requires a global (non-programmable) reference string and is based on one way functions and general-purpose indistinguishability obfuscation with sub-exponential security, as well as augmented non-committing encryption.

A Byzantine version of the protocol, obtained by applying the Canetti et al. [STOC 02] compiler, achieves UC security with comparable efficiency parameters, but is no longer incoercible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BCH12]
    Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. [BDL14]
    Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg (2014)Google Scholar
  3. [BGI+01]
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. Electronic Colloquium on Computational Complexity (ECCC) 8(057) (2001)Google Scholar
  4. [BGI13]
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. IACR Cryptology ePrint Archive, 2013:401 (2013)Google Scholar
  5. [BGW88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA, May 2-4, pp. 1–10 (1988)Google Scholar
  6. [BW13]
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001), Full version in IACR Eprint Archive, record 2000/067 (2013 revision)Google Scholar
  8. [CDNO97]
    Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. [CDPW07]
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. [CFGN96]
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, pp. 639–648 (1996)Google Scholar
  11. [CG96]
    Canetti, R., Gennaro, R.: Incoercible multiparty computation (extended abstract). In: 37th Annual Symposium on Foundations of Computer Science, FOCS 1996, Burlington, Vermont, USA, October 14-16, pp. 504–513 (1996)Google Scholar
  12. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: Proceedings on 34th Annual ACM Symposium on Theory of Computing, Montréal, Québec, Canada, May 19-21, pp. 494–503 (2002)Google Scholar
  13. [DKR14]
    Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable, multi-party computation in constant rounds. IACR Cryptology ePrint Archive, 2014:858 (2014)Google Scholar
  14. [DN00]
    Damgård, I., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. [EGL85]
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)MathSciNetCrossRefMATHGoogle Scholar
  16. [GGH+13]
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Berkeley, CA, USA, October 26-29, pp. 40–49 (2013)Google Scholar
  17. [GGM86]
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefMATHGoogle Scholar
  18. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, New York, USA, pp. 218–229 (1987)Google Scholar
  19. [GP14]
    Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2014:844 (2014)Google Scholar
  20. [GR14]
    Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryptology 27(3), 480–505 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. [GS12]
    Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 105–123. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. [IPS08]
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. [LP09]
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)MathSciNetCrossRefMATHGoogle Scholar
  24. [SW14]
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Symposium on Theory of Computing, STOC 2014, New York, NY, USA, 2014, May 31-June 03, pp. 475–484 (2014)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Ran Canetti
    • 1
    • 4
  • Shafi Goldwasser
    • 2
    • 3
  • Oxana Poburinnaya
    • 4
  1. 1.Tel-Aviv UniversityIsrael
  2. 2.WeizmannIsrael
  3. 3.MITUSA
  4. 4.Boston UniversityUSA

Personalised recommendations