Advertisement

Functional Encryption for Randomized Functionalities in the Private-Key Setting from Minimal Assumptions

  • Ilan Komargodski
  • Gil Segev
  • Eylon Yogev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9015)

Abstract

We present a construction of a private-key functional encryption scheme for any family of randomized functionalities based on any such scheme for deterministic functionalities that is sufficiently expressive. Instantiating our construction with existing schemes for deterministic functionalities, we obtain schemes for any family of randomized functionalities based on a variety of assumptions (including the LWE assumption, simple assumptions on multilinear maps, and even the existence of any one-way function) offering various trade-offs between security and efficiency.

Previously, Goyal, Jain, Koppula and Sahai [TCC, 2015] constructed a public-key functional encryption scheme for any family of randomized functionalities based on indistinguishability obfuscation.

One of the key insights underlying our work is that, in the privatekey setting, a sufficiently expressive functional encryption scheme may be appropriately utilized for implementing proof techniques that were so far implemented based on obfuscation assumptions (such as the punctured programming technique of Sahai and Waters [STOC, 2014]). We view this as a contribution of independent interest that may be found useful in other settings as well.

Keywords

Deterministic Function Function Family Cryptology ePrint Archive Challenge Ciphertext Message Privacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: Function private functional encryption and property preserving encryption: New definitions and positive results. Cryptology ePrint Archive, Report 2013/744 (2013)Google Scholar
  2. 2.
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: New perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro, S., Wilson, D.A.: On the relationship between functional encryption, obfuscation, and fully homomorphic encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 65–84. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013)Google Scholar
  5. 5.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: The trojan method in functional encryption: From selective to adaptive security, generically. Cryptology ePrint Archive, Report 2014/917 (2014)Google Scholar
  6. 6.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. Journal of the ACM 59(2), 6 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility results, impossibility results and the quest for a general definition. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM Journal on Computing 32(3), 586–615 (2003), preliminary version in: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: Hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. Cryptology ePrint Archive, Report 2014/550 (2014)Google Scholar
  16. 16.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 40–49 (2013)Google Scholar
  19. 19.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption without obfuscation. Cryptology ePrint Archive, Report 2014/666 (2014)Google Scholar
  20. 20.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM 33(4), 792–807 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pp. 555–564 (2013)Google Scholar
  23. 23.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized functionalities. Cryptology ePrint Archive, Report 2013/729 (2013), to appear in Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 325–351. Springer, Heidelberg (2015)Google Scholar
  25. 25.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Proceedings of the 20th Annual ACM Conference on Computer and Communications Security, pp. 669–684 (2013)Google Scholar
  26. 26.
    Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized functionalities in the private-key setting from minimal assumptions. Cryptology ePrint Archive, Report 2014/868 (2014)Google Scholar
  27. 27.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010)Google Scholar
  28. 28.
    Sahai, A., Waters, B.: Slides on functional encryption (2008), http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
  29. 29.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 475–484 (2014)Google Scholar
  30. 30.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  31. 31.
    Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. Cryptology ePrint Archive, Report 2014/588 (2014)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Ilan Komargodski
    • 1
  • Gil Segev
    • 2
  • Eylon Yogev
    • 1
  1. 1.Weizmann Institute of ScienceRehovotIsrael
  2. 2.Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations