Advertisement

The Power of Negations in Cryptography

  • Siyao Guo
  • Tal Malkin
  • Igor C. Oliveira
  • Alon Rosen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9014)

Abstract

The study of monotonicity and negation complexity for Bool-ean functions has been prevalent in complexity theory as well as in computational learning theory, but little attention has been given to it in the cryptographic context. Recently, Goldreich and Izsak (2012) have initiated a study of whether cryptographic primitives can be monotone, and showed that one-way functions can be monotone (assuming they exist), but a pseudorandom generator cannot.

In this paper, we start by filling in the picture and proving that many other basic cryptographic primitives cannot be monotone. We then initiate a quantitative study of the power of negations, asking how many negations are required. We provide several lower bounds, some of them tight, for various cryptographic primitives and building blocks including one-way permutations, pseudorandom functions, small-bias generators, hard-core predicates, error-correcting codes, and randomness extractors. Among our results, we highlight the following.

  • Unlike one-way functions, one-way permutations cannot be monotone.

  • We prove that pseudorandom functions require logn − O(1) negations (which is optimal up to the additive term).

  • We prove that error-correcting codes with optimal distance parameters require logn − O(1) negations (again, optimal up to the additive term).

  • We prove a general result for monotone functions, showing a lower bound on the depth of any circuit with t negations on the bottom that computes a monotone function f in terms of the monotone circuit depth of f. This result addresses a question posed by Koroth and Sarma (2014) in the context of the circuit complexity of the Clique problem.

Keywords

Boolean Function Monotone Function Pseudorandom Generator Boolean Circuit Cryptographic Primitive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate weak pseudorandom functions in AC0 ∘ MOD2. In: Innovations in Theoretical Computer Science (ITCS), pp. 251–260 (2014)Google Scholar
  2. 2.
    Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Interscience (2008)Google Scholar
  3. 3.
    Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing the clique function with at most (1/6)log log n negation gates. SIAM J. Comput. 35(1), 201–216 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. Comput. 36(4), 845–888 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Arora, S., Barak, B.: Complexity Theory: A Modern Approach. Cambridge University Press (2009)Google Scholar
  6. 6.
    Beals, R., Nishino, T., Tanaka, K.: More on the complexity of negation-limited circuits. In: Symposium on Theory of Computing (STOC), pp. 585–595 (1995)Google Scholar
  7. 7.
    Beals, R., Nishino, T., Tanaka, K.: On the complexity of negation-limited boolean networks. SIAM J. Comput. 27(5), 1334–1347 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Blais, E., Canonne, C.C., Oliveira, I.C., Servedio, R.A., Tan, L.-Y.: Learning circuits with few negations (2014) (preprint)Google Scholar
  9. 9.
    Blum, A., Burch, C., Langford, J.: On learning monotone boolean functions. In: Symposium on Foundations of Computer Science (FOCS), pp. 408–415 (1998)Google Scholar
  10. 10.
    Bogdanov, A., Guo, S.: Sparse extractor families for all the entropy. In: Innovations in Theoretical Cmputer Science (ITCS), pp. 553–560 (2013)Google Scholar
  11. 11.
    Nader, H.: Bshouty and Christino Tamon: On the fourier spectrum of monotone functions. J. ACM 43(4), 747–770 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Buresh-Oppenheim, J., Kabanets, V., Santhanam, R.: Uniform hardness amplification in NP via monotone codes. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 13(154) (2006)Google Scholar
  13. 13.
    Dachman-Soled, D., Lee, H.K., Malkin, T., Servedio, R.A., Wan, A., Wee, H.: Optimal cryptographic hardness of learning monotone functions. Theory of Computing 5(1), 257–282 (2009)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Michael, J.: Fischer. The complexity of negation-limited networks - A brief survey. In: Automata Theory and Formal Languages, pp. 71–82 (1975)Google Scholar
  15. 15.
    Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Communications in Mathematical Physics 22(2), 89–103 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Goldmann, M., Russell, A.: Spectral bounds on general hard-core predicates. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 614–625. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Goldreich, O.: Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press (2007)Google Scholar
  18. 18.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Goldreich, O., Izsak, R.: Monotone circuits: One-way functions versus pseudorandom generators. Theory of Computing 8(1), 231–238 (2012)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Symposium on Theory of Computing (STOC), pp. 25–32 (1989)Google Scholar
  21. 21.
    Hofmeister, T.: The power of negative thinking in constructing threshold circuits for addition. In: Structure in Complexity Theory Conference, pp. 20–26 (1992)Google Scholar
  22. 22.
    Jukna, S.: Boolean Function Complexity - Advances and Frontiers. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  23. 23.
    Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: Symposium on Foundations of Computer Science (FOCS), pp. 68–80 (1988)Google Scholar
  24. 24.
    Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. In: Symposium on Theory of Computing (STOC), pp. 539–550 (1988)Google Scholar
  25. 25.
    Koroth, S., Sarma, J.: Depth lower bounds against circuits with sparse orientation. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 596–607. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  26. 26.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press (1997)Google Scholar
  27. 27.
    Markov, A.A.: On the inversion complexity of a system of functions. J. ACM 5(4), 331–334 (1958)CrossRefzbMATHGoogle Scholar
  28. 28.
    Morizumi, H.: Limiting negations in formulas. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 701–712. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Morizumi, H.: Limiting negations in non-deterministic circuits. Theoretical Computer Science 410(38-40), 3988–3994 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput. 22(4), 838–856 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press (2014)Google Scholar
  32. 32.
    O’Donnell, R., Wimmer, K.: Kkl, kruskal-katona, and monotone nets. SIAM J. Comput. 42(6), 2375–2399 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. J. ACM 39(3), 736–744 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Santha, M., Wilson, C.B.: Limiting negations in constant depth circuits. SIAM J. Comput. 22(2), 294–302 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Sung, S.C., Tanaka, K.: An exponential gap with the removal of one negation gate. Inf. Process. Lett. 82(3), 155–157 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Sung, S.C., Tanaka, K.: Limiting negations in bounded-depth circuits: An extension of Markov’s theorem. Inf. Process. Lett. 90(1), 15–20 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Talagrand, M.: How much are increasing sets positively correlated? Combinatorica 16(2), 243–258 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Tardos, É.: The gap between monotone and non-monotone circuit complexity is exponential. Combinatorica 8(1), 141–142 (1988)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Siyao Guo
    • 1
  • Tal Malkin
    • 2
  • Igor C. Oliveira
    • 2
  • Alon Rosen
    • 3
  1. 1.Department of Computer Science and EngineeringChinese University of Hong KongChina
  2. 2.Department of Computer ScienceColumbia UniversityUSA
  3. 3.Efi Arazi School of Computer ScienceIDC HerzliyaIsrael

Personalised recommendations