Advertisement

A Rate-Optimizing Compiler for Non-malleable Codes Against Bit-Wise Tampering and Permutations

  • Shashank Agrawal
  • Divya Gupta
  • Hemanta K. Maji
  • Omkant Pandey
  • Manoj Prabhakaran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9014)

Abstract

A non-malleable code protects messages against a class of tampering functions. Informally, a code is non-malleable if the effect of applying any tampering function on an encoded message is to either retain the message or to replace it with an unrelated message. Two main challenges in this area – apart from establishing the feasibility against different families of tampering – are to obtain explicit constructions and to obtain high-rates for such constructions.

In this work, we present a compiler to transform low-rate (in fact, zero rate) non-malleable codes against certain class of tampering into an optimal-rate – i.e., rate 1 – non-malleable codes against the same class. If the original code is explicit, so is the new one.

When applied to the family of bit-wise tampering functions, this subsumes (and greatly simplifies) a recent result of Cheraghchi and Guruswami (TCC 2014). Further, our compiler can be applied to non-malleable codes against the class of bit-wise tampering and bit-level permutations. Combined with the rate-0 construction in a companion work, this yields the first explicit rate-1 non-malleable code for this family of tampering functions.

Our compiler uses a new technique for boot-strapping non-malleability by introducing errors, that may be of independent interest.

Keywords

Non-malleable Codes Explicit Construction Information Theoretic Rate-Optimizing Compiler Rate 1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC, pp. 774–783 (2014)Google Scholar
  2. 2.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes resistant to permutations. Cryptology ePrint Archive, Report 2014/316 (2014), http://eprint.iacr.org/
  3. 3.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes resistant to permutations and perturbations. Cryptology ePrint Archive, Report 2014/841 (2014), http://eprint.iacr.org/
  4. 4.
    Blakley, G., Meadows, C.: Security of ramp schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985), http://dx.doi.org/10.1007/3-540-39568-7_20 CrossRefGoogle Scholar
  5. 5.
    Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decodable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 489–514. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. Electronic Colloquium on Computational Complexity, Report 2014/102 (2014), http://eccc.hpi-web.de/
  7. 7.
    Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M. (ed.) ITCS, pp. 155–168. ACM (2014)Google Scholar
  9. 9.
    Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Choi, S.G., Kiayias, A., Malkin, T.: BiTR: Built-in tamper resilience. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Chvátal, V.: The tail of the hypergeometric distribution. Discrete Mathematics 25(3), 285–287 (1979), http://www.sciencedirect.com/science/article/pii/0012365X79900840 CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Padró, C., Xing, C.: Optimal algebraic manipulation detection codes (2014), http://eprint.iacr.org/2014/116
  14. 14.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003), http://dx.doi.org/10.1137/S0097539702403773 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C. (ed.) ICS, pp. 434–452. Tsinghua University Press (2010)Google Scholar
  17. 17.
    Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  19. 19.
    Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) Proceedings of the 24th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 4-6, pp. 699–710. ACM (1992), http://doi.acm.org/10.1145/129712.129780
  20. 20.
    Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of function fields over finite fields. Journal of Number Theory 61(2), 248–273 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Goppa, V.D.: Codes on algebraic curves. In: Soviet Math. Dokl. pp. 170–172 (1981)Google Scholar
  22. 22.
    Guruswami, V., Smith, A.: Codes for computationally simple channels: Explicit constructions with optimal rate. In: FOCS, pp. 723–732. IEEE Computer Society (2010)Google Scholar
  23. 23.
    Hemenway, B., Ostrovsky, R.: Public-key locally-decodable codes. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 126–143. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963), http://www.jstor.org/stable/2282952 CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Kurosawa, K.: Hybrid encryption. In: Encyclopedia of Cryptography and Security, 2nd edn., pp. 570–572 (2011), http://dx.doi.org/10.1007/978-1-4419-5906-5_321
  26. 26.
    Lipton, R.J.: A new approach to information theory. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 699–708. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  27. 27.
    Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 1–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Ostrovsky, R., Pandey, O., Sahai, A.: Private locally decodable codes. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 387–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11) (November 1979)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Shashank Agrawal
    • 1
  • Divya Gupta
    • 2
    • 3
  • Hemanta K. Maji
    • 2
    • 3
  • Omkant Pandey
    • 1
    • 3
  • Manoj Prabhakaran
    • 1
  1. 1.University of Illinois Urbana-ChampaignUSA
  2. 2.University of California Los AngelesUSA
  3. 3.Center for Encrypted FunctionalitiesUSA

Personalised recommendations