Resettably Sound Zero-Knowledge Arguments from OWFs - The (Semi) Black-Box Way

  • Rafail Ostrovsky
  • Alessandra Scafuro
  • Muthuramakrishnan Venkitasubramanian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9014)


We construct a constant round resettably-sound zero knowledge argument of knowledge based on black-box use of any one-way function. Resettable-soundness was introduced by Barak, Goldreich, Goldwasser and Lindell [FOCS 01] and is a strengthening of the soundness requirement in interactive proofs demanding that soundness should hold even if the malicious prover is allowed to “reset” and “restart” the verifier. In their work they show that resettably-sound ZK arguments require nonblack- box simulation techniques, and also provide the first construction based on the breakthrough simulation technique of Barak [FOCS 01]. All known implementations of Barak’s non-black-box technique required non-black-box use of a collision-resistance hash-function (CRHF).

Very recently, Goyal, Ostrovsky, Scafuro and Visconti [STOC 14] showed an implementation of Barak’s technique that needs only blackbox access to a collision-resistant hash-function while still having a nonblack- box simulator. (Such a construction is referred to as semi blackbox.) Plugging this implementation in the compiler due to Barak et al. yields the first resettably-sound ZK arguments based on black-box use of CRHFs.

However, from the work of Chung, Pass and Seth [STOC 13] and Bitansky and Paneth [STOC 13], we know that resettably-sound ZK arguments can be constructed from non-black-box use of any one-way function (OWF), which is the minimal assumption for ZK arguments.

Hence, anatural question iswhether it ispossible to construct resettablysound zero-knowledge arguments from black-box use of any OWF only. In this work we provide a positive answer to this question thus closing the gap between black-box and non-black-box constructions for resettably-sound ZK arguments.


Signature Scheme Commitment Scheme Probabilistically Checkable Proof Random Tape Signing Oracle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115. IEEE Computer Society (2001)Google Scholar
  2. 2.
    Barak, B., Goldreich, O.: Universal arguments and their applications. In: Computational Complexity, pp. 162–171 (2002)Google Scholar
  3. 3.
    Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: FOCS 2001, pp. 116–125 (2001)Google Scholar
  4. 4.
    Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust pcps of proximity, shorter pcps, and applications to coding. SIAM J. Comput. 36(4), 889–974 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: STOC, pp. 241–250 (2013)Google Scholar
  6. 6.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults (Extended Abstract). In: Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1985, pp. 383–395 (1985)Google Scholar
  8. 8.
    Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti, I.: 4-round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 192–216. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Chung, K.M., Pass, R., Seth, K.: Non-black-box simulation from one-way functions and applications to resettable security. In: STOC (2013)Google Scholar
  10. 10.
    Dachman-Soled, D., Kalai, Y.T.: Securing circuits against constant-rate tampering. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 533–551. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive and concurrent secure computation from new adaptive, non-malleable commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 316–336. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge University Press (2001)Google Scholar
  13. 13.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: STOC, pp. 291–304 (1985)Google Scholar
  14. 14.
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: Fortnow, L., Vadhan, S.P. (eds.) STOC, pp. 695–704. ACM (2011)Google Scholar
  15. 15.
    Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: A black-box approach. In: FOCS, pp. 51–60. IEEE Computer Society (2012)Google Scholar
  16. 16.
    Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero knowledge. In: STOC (2014)Google Scholar
  17. 17.
    Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) Advances in Cryptology - CRYPT0 1988. LNCS, vol. 403, pp. 8–26. Springer, Heidelberg (1990)Google Scholar
  19. 19.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, pp. 99–108. ACM (2006)Google Scholar
  20. 20.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 21–30. ACM (2007)Google Scholar
  21. 21.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) STOC, pp. 723–732. ACM (1992)Google Scholar
  22. 22.
    Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  24. 24.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: STOC 1989, pp. 33–43 (1989)Google Scholar
  25. 25.
    Ostrovsky, R., Scafuro, A., Venkitasubramaniam, M.: Resettably sound zero-knoweldge arguments from owfs - the (semi) black-box way. Cryptology ePrint Archive, Report 2014/284 (2014),
  26. 26.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: STOC 2005, pp. 533–542 (2005)Google Scholar
  27. 27.
    Pass, R., Tseng, W.-L.D., Wikström, D.: On the composition of public-coin zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 160–176. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, USA, May 13-17, pp. 387–394. ACM (1990)Google Scholar
  31. 31.
    Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: FOCS, pp. 531–540. IEEE Computer Society (2010)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Rafail Ostrovsky
    • 1
  • Alessandra Scafuro
    • 2
  • Muthuramakrishnan Venkitasubramanian
    • 3
  1. 1.UCLAUSA
  2. 2.Boston University and Northeastern UniversityUSA
  3. 3.University of RochesterUSA

Personalised recommendations