An Alternative Approach to Non-black-box Simulation in Fully Concurrent Setting

  • Susumu Kiyoshima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9014)

Abstract

We give a new proof of the existence of public-coin concurrent zero-knowledge arguments for \(\mathcal{NP}\) in the plain model under standard assumptions (the existence of one-to-one one-way functions and collision-resistant hash functions), which was originally proven by Goyal (STOC’13).

In the proof, we use a new variant of the non-black-box simulation technique of Barak (FOCS’01). An important property of our simulation technique is that the simulator runs in a straight-line manner in the fully concurrent setting. Compared with the simulation technique of Goyal, which also has such a property, the analysis of our simulation technique is (arguably) simpler.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)Google Scholar
  2. 2.
    Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new non-black-box simulation technique. In: FOCS, pp. 223–232 (2012)Google Scholar
  4. 4.
    Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: STOC, pp. 241–250 (2013)Google Scholar
  5. 5.
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires (almost) logarithmically many rounds. SIAM J. Comput. 32(1), 1–47 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in the global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 80–99. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Chung, K.M., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from P-certificates. In: FOCS, pp. 50–59 (2013)Google Scholar
  8. 8.
    Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti, I.: 4-round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 192–216. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Goldreich, O.: Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press (August 2001)Google Scholar
  11. 11.
    Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Goyal, V.: Non-black-box simulation in the fully concurrent setting. In: STOC, pp. 221–230 (2013)Google Scholar
  15. 15.
    Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-loalgorithm rounds. In: STOC, pp. 560–569 (2001)Google Scholar
  16. 16.
    Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simulation and four message concurrent zero knowledge for NP. Cryptology ePrint Archive, Report 2013/754 (2013), http://eprint.iacr.org/
  18. 18.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: STOC, pp. 533–542 (2005)Google Scholar
  19. 19.
    Pass, R., Rosen, A., Tseng, W.L.D.: Public-coin parallel zero-knowledge for NP. J. Cryptology 26(1), 1–10 (2013)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pass, R., Tseng, W.-L.D., Wikström, D.: On the composition of public-coin zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 160–176. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)Google Scholar
  22. 22.
    Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Susumu Kiyoshima
    • 1
  1. 1.NTT Secure Platform LaboratoriesJapan

Personalised recommendations