Advertisement

An Alternative Approach to Non-black-box Simulation in Fully Concurrent Setting

  • Susumu Kiyoshima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9014)

Abstract

We give a new proof of the existence of public-coin concurrent zero-knowledge arguments for \(\mathcal{NP}\) in the plain model under standard assumptions (the existence of one-to-one one-way functions and collision-resistant hash functions), which was originally proven by Goyal (STOC’13).

In the proof, we use a new variant of the non-black-box simulation technique of Barak (FOCS’01). An important property of our simulation technique is that the simulator runs in a straight-line manner in the fully concurrent setting. Compared with the simulation technique of Goyal, which also has such a property, the analysis of our simulation technique is (arguably) simpler.

Keywords

Hash Function Simulation Technique Negligible Probability Probabilistically Checkable Proof True Randomness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)Google Scholar
  2. 2.
    Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new non-black-box simulation technique. In: FOCS, pp. 223–232 (2012)Google Scholar
  4. 4.
    Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: STOC, pp. 241–250 (2013)Google Scholar
  5. 5.
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires (almost) logarithmically many rounds. SIAM J. Comput. 32(1), 1–47 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in the global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 80–99. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Chung, K.M., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from P-certificates. In: FOCS, pp. 50–59 (2013)Google Scholar
  8. 8.
    Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti, I.: 4-round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 192–216. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Goldreich, O.: Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press (August 2001)Google Scholar
  11. 11.
    Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Goyal, V.: Non-black-box simulation in the fully concurrent setting. In: STOC, pp. 221–230 (2013)Google Scholar
  15. 15.
    Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-loalgorithm rounds. In: STOC, pp. 560–569 (2001)Google Scholar
  16. 16.
    Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simulation and four message concurrent zero knowledge for NP. Cryptology ePrint Archive, Report 2013/754 (2013), http://eprint.iacr.org/
  18. 18.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: STOC, pp. 533–542 (2005)Google Scholar
  19. 19.
    Pass, R., Rosen, A., Tseng, W.L.D.: Public-coin parallel zero-knowledge for NP. J. Cryptology 26(1), 1–10 (2013)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pass, R., Tseng, W.-L.D., Wikström, D.: On the composition of public-coin zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 160–176. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)Google Scholar
  22. 22.
    Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Susumu Kiyoshima
    • 1
  1. 1.NTT Secure Platform LaboratoriesJapan

Personalised recommendations