Advertisement

Pain Control pp 207-238 | Cite as

The Relationship Between Opioids and Immune Signalling in the Spinal Cord

  • Jacob Thomas
  • Sanam Mustafa
  • Jacinta Johnson
  • Lauren Nicotra
  • Mark Hutchinson
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 227)

Abstract

Opioids are considered the gold standard for the treatment of moderate to severe pain. However, heterogeneity in analgesic efficacy, poor potency and side effects are associated with opioid use, resulting in dose limitations and suboptimal pain management. Traditionally thought to exhibit their analgesic actions via the activation of the neuronal G-protein-coupled opioid receptors, it is now widely accepted that neuronal activity of opioids cannot fully explain the initiation and maintenance of opioid tolerance, hyperalgesia and allodynia. In this review we will highlight the evidence supporting the role of non-neuronal mechanisms in opioid signalling, paying particular attention to the relationship of opioids and immune signalling.

Keywords

Opioid Analgesia Tolerance Immune signalling Cytokines Chemokines Glia Non-stereoselectivity 

References

  1. Abbott FV, Fraser MI (1998) Use and abuse of over-the-counter analgesic agents. J Psychiatry Neurosci 23:13–34PubMedCentralPubMedGoogle Scholar
  2. Ali BH, Sharif SI, Elkadi A (1995) Sex differences and the effect of gonadectomy on morphine-induced antinociception and dependence in rats and mice. Clin Exp Pharmacol Physiol 22:342–344PubMedGoogle Scholar
  3. Analgesic Expert Group (2007) Getting to know your analgesics and adjuvants. In: Therapeutic guidelines analgesic. Version 5. Therapeutic guidelines limited, Melbourne, p 44Google Scholar
  4. Araque A, Navarrete M (2010) Glial cells in neuronal network function. Philos Trans R Soc Lond B Biol Sci 365:2375–2381. doi: 10.1098/rstb.2009.0313 PubMedCentralPubMedGoogle Scholar
  5. Asensio VC, Campbell IL (1999) Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22:504–512PubMedGoogle Scholar
  6. Avdoshina V, Biggio F, Palchik G et al (2010) Morphine induces the release of CCL5 from astrocytes: potential neuroprotective mechanism against the HIV protein gp120. Glia 58:1630–1639. doi: 10.1002/glia.21035 PubMedCentralPubMedGoogle Scholar
  7. Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179PubMedGoogle Scholar
  8. Banerjee P, Chatterjee TK, Ghosh JJ (1983) Ovarian steroids and modulation of morphine-induced analgesia and catalepsy in female rats. Eur J Pharmacol 96:291–294PubMedGoogle Scholar
  9. Bederson JB, Fields HL, Barbaro NM (1990) Hyperalgesia during naloxone-precipitated withdrawal from morphine is associated with increased on-cell activity in the rostral ventromedial medulla. Somatosens Mot Res 7:185–203PubMedGoogle Scholar
  10. Belkowski SM, Alicea C, Eisenstein TK et al (1995) Inhibition of interleukin-1 and tumor necrosis factor-alpha synthesis following treatment of macrophages with the kappa opioid agonist U50, 488H. J Pharmacol Exp Ther 273:1491–1496PubMedGoogle Scholar
  11. Ben Achour S, Pascual O (2010) Glia: the many ways to modulate synaptic plasticity. Neurochem Int 57:440–445. doi: 10.1016/j.neuint.2010.02.013 PubMedGoogle Scholar
  12. Berglund LA, Simpkins JW (1988) Alterations in brain opiate receptor mechanisms on proestrous afternoon. Neuroendocrinology 48:394–400PubMedGoogle Scholar
  13. Bland ST, Hutchinson MR, Maier SF et al (2009) The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav Immun 23:492–497. doi: 10.1016/j.bbi.2009.01.014 PubMedCentralPubMedGoogle Scholar
  14. Broom DC, Samad TA, Kohno T et al (2004) Cyclooxygenase 2 expression in the spared nerve injury model of neuropathic pain. Neuroscience 124:891–900. doi: 10.1016/j.neuroscience.2004.01.003 PubMedGoogle Scholar
  15. Bryan L, Kordula T, Spiegel S, Milstien S (2008) Regulation and functions of sphingosine kinases in the brain. Biochim Biophys Acta 1781:459–466. doi: 10.1016/j.bbalip.2008.04.008 PubMedCentralPubMedGoogle Scholar
  16. Buchanan MM, Hutchinson M, Watkins LR, Yin H (2010) Toll-like receptor 4 in CNS pathologies. J Neurochem 114:13–27. doi: 10.1111/j.1471-4159.2010.06736.x PubMedCentralPubMedGoogle Scholar
  17. Calippe B, Douin-Echinard V, Delpy L et al (2010) 17Beta-estradiol promotes TLR4-triggered proinflammatory mediator production through direct estrogen receptor alpha signaling in macrophages in vivo. J Immunol 185:1169–1176. doi: 10.4049/jimmunol.0902383 PubMedGoogle Scholar
  18. Campbell LA, Avdoshina V, Rozzi S, Mocchetti I (2013) CCL5 and cytokine expression in the rat brain: differential modulation by chronic morphine and morphine withdrawal. Brain Behav Immun 34:130–140. doi: 10.1016/j.bbi.2013.08.006 PubMedGoogle Scholar
  19. Candido J, Lutfy K, Billings B et al (1992) Effect of adrenal and sex hormones on opioid analgesia and opioid receptor regulation. Pharmacol Biochem Behav 42:685–692PubMedGoogle Scholar
  20. Capuano A, De Corato A, Lisi L et al (2009) Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Mol Pain 5:43. doi: 10.1186/1744-8069-5-43 PubMedCentralPubMedGoogle Scholar
  21. Célérier E, González JR, Maldonado R et al (2006) Opioid-induced hyperalgesia in a murine model of postoperative pain: role of nitric oxide generated from the inducible nitric oxide synthase. Anesthesiology 104:546PubMedGoogle Scholar
  22. Chao CC, Molitor TW, Close K et al (1993) Morphine inhibits the release of tumor necrosis factor in human peripheral blood mononuclear cell cultures. Int J Immunopharmacol 15:447–453PubMedGoogle Scholar
  23. Chapman GA, Moores K, Harrison D et al (2000) Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci 20:RC87PubMedGoogle Scholar
  24. Chapman V, Honoré P, Buritova J, Besson JM (1995) Cholecystokinin B receptor antagonism enhances the ability of a low dose of morphine to reduce c-Fos expression in the spinal cord of the rat. Neuroscience 67:731–739PubMedGoogle Scholar
  25. Chen C, Li J, Bot G et al (2004) Heterodimerization and cross-desensitization between the μ-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 483:175–186. doi: 10.1016/j.ejphar.2003.10.033 PubMedGoogle Scholar
  26. Chen X, Geller EB, Rogers TJ, Adler MW (2007a) Rapid heterologous desensitization of antinociceptive activity between mu or delta opioid receptors and chemokine receptors in rats. Drug Alcohol Depend 88:36–41. doi: 10.1016/j.drugalcdep.2006.09.010 PubMedCentralPubMedGoogle Scholar
  27. Chen X, Geller EB, Rogers TJ, Adler MW (2007b) The chemokine CX3CL1/fractalkine interferes with the antinociceptive effect induced by opioid agonists in the periaqueductal grey of rats. Brain Res 1153:52–57. doi: 10.1016/j.brainres.2007.03.066 PubMedCentralPubMedGoogle Scholar
  28. Chen Y, Sommer C (2009) The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol Neurobiol 40:101–107. doi: 10.1007/s12035-009-8074-z PubMedGoogle Scholar
  29. Cicero TJ, Nock B, O’Connor L, Meyer ER (2002) Role of steroids in sex differences in morphine-induced analgesia: activational and organizational effects. J Pharmacol Exp Ther 300:695–701PubMedGoogle Scholar
  30. Craft RM, Mogil JS, Aloisi AM (2004) Sex differences in pain and analgesia: the role of gonadal hormones. Eur J Pain 8:397–411. doi: 10.1016/j.ejpain.2004.01.003 PubMedGoogle Scholar
  31. Cui Y, Chen Y, Zhi J-L et al (2006) Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res 1069:235–243. doi: 10.1016/j.brainres.2005.11.066 PubMedGoogle Scholar
  32. Cui Y, Liao X-X, Liu W et al (2008) A novel role of minocycline: attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav Immun 22:114–123. doi: 10.1016/j.bbi.2007.07.014 PubMedGoogle Scholar
  33. Dame JB, Juul SE (2000) The distribution of receptors for the pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the developing human fetus. Early Hum Dev 58:25–39PubMedGoogle Scholar
  34. De A, Krueger JM, Simasko SM (2003) Tumor necrosis factor alpha increases cytosolic calcium responses to AMPA and KCl in primary cultures of rat hippocampal neurons. Brain Res 981:133–142PubMedGoogle Scholar
  35. de Araujo Lucas G, Alster P, Brodin E, Wiesenfeld-Hallin Z (1998) Differential release of cholecystokinin by morphine in rat spinal cord. Neurosci Lett 245:13–16PubMedGoogle Scholar
  36. De Leo JA, Tawfik VL, LaCroix-Fralish ML (2006) The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain 122:17–21. doi: 10.1016/j.pain.2006.02.034 PubMedGoogle Scholar
  37. Ding XZ, Bayer BM (1993) Increases of CCK mRNA and peptide in different brain areas following acute and chronic administration of morphine. Brain Res 625:139–144PubMedGoogle Scholar
  38. Dourish CT, O’Neill MF, Coughlan J et al (1990) The selective CCK-B receptor antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur J Pharmacol 176:35–44PubMedGoogle Scholar
  39. Eidson LN, Murphy AZ (2013) Blockade of toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine. J Neurosci 33:15952–15963. doi: 10.1523/JNEUROSCI. 1609-13.2013 PubMedCentralPubMedGoogle Scholar
  40. El-Hage N, Bruce-Keller AJ, Knapp PE, Hauser KF (2008) CCL5/RANTES gene deletion attenuates opioid-induced increases in glial CCL2/MCP-1 immunoreactivity and activation in HIV-1 Tat-exposed mice. J Neuroimmune Pharmacol 3:275–285. doi: 10.1007/s11481-008-9127-1 PubMedCentralPubMedGoogle Scholar
  41. Emch GS, Hermann GE, Rogers RC (2001) TNF-alpha-induced c-Fos generation in the nucleus of the solitary tract is blocked by NBQX and MK-801. Am J Physiol Regul Integr Comp Physiol 281:R1394–R1400PubMedGoogle Scholar
  42. Fairbanks CA, Wilcox GL (2000) Spinal plasticity of acute opioid tolerance. J Biomed Sci 7:200–212PubMedGoogle Scholar
  43. Faris PL, Komisaruk BR, Watkins LR, Mayer DJ (1983) Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 219:310–312PubMedGoogle Scholar
  44. Ferré S, Baler R, Bouvier M et al (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134. doi: 10.1038/nchembio0309-131 PubMedCentralPubMedGoogle Scholar
  45. Fields H (1992) Is there a facilitating component to central pain modulation? APS J 1:139–141Google Scholar
  46. Fields HL, Vanegas H, Hentall ID, Zorman G (1983) Evidence that disinhibition of brain stem neurones contributes to morphine analgesia. Nature 306:684–686PubMedGoogle Scholar
  47. Fillingim RB, Ness TJ (2000) Sex-related hormonal influences on pain and analgesic responses. Neurosci Biobehav Rev 24:485–501PubMedGoogle Scholar
  48. Freedman NJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–351; discussion 352–3PubMedGoogle Scholar
  49. Freeman SE, Patil VV, Durham PL (2008) Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells. Neuroscience 157:542–555. doi: 10.1016/j.neuroscience.2008.09.035 PubMedCentralPubMedGoogle Scholar
  50. Gainetdinov RR, Premont RT, Bohn LM et al (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144. doi: 10.1146/annurev.neuro.27.070203.144206 PubMedGoogle Scholar
  51. Goldstein A, Lowney LI, Pal BK (1971) Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci U S A 68:1742–1747PubMedCentralPubMedGoogle Scholar
  52. González-Hernández T, Rustioni A (1999) Expression of three forms of nitric oxide synthase in peripheral nerve regeneration. J Neurosci Res 55:198–207PubMedGoogle Scholar
  53. Grace PM, Hutchinson MR, Bishop A et al (2011) Adoptive transfer of peripheral immune cells potentiates allodynia in a graded chronic constriction injury model of neuropathic pain. Brain Behav Immun 25:503–513. doi: 10.1016/j.bbi.2010.11.018 PubMedGoogle Scholar
  54. Grimm MC, Ben-Baruch A, Taub DD et al (1998) Opiates transdeactivate chemokine receptors: delta and mu opiate receptor-mediated heterologous desensitization. J Exp Med 188:317–325PubMedCentralPubMedGoogle Scholar
  55. Guo R-X, Zhang M, Liu W et al (2009) NMDA receptors are involved in upstream of the spinal JNK activation in morphine antinociceptive tolerance. Neurosci Lett 467:95–99. doi: 10.1016/j.neulet.2009.10.013 PubMedGoogle Scholar
  56. Harrison CM, Charles J, Henderson J, Britt H (2012) Opioid prescribing in Australian general practice. Med J Aust 196:380–381. doi: 10.5694/mja12.10168 PubMedGoogle Scholar
  57. Headache Classification Committee of the International Headache Society (2006) New appendix criteria open for a broader concept of chronic migraine. Cephalalgia 26(6):742–746Google Scholar
  58. Heinisch S, Palma J, Kirby LG (2011) Interactions between chemokine and mu-opioid receptors: anatomical findings and electrophysiological studies in the rat periaqueductal grey. Brain Behav Immun 25:360–372. doi: 10.1016/j.bbi.2010.10.020.Interactions PubMedCentralPubMedGoogle Scholar
  59. Heinricher M (2004) Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J Neurophysiol 92:1982–1989PubMedGoogle Scholar
  60. Heinricher M, McGaraughty S, Tortorici V (2001) Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J Neurophysiol 85:280–286PubMedGoogle Scholar
  61. Heinricher M, Morgan M, Fields HL (1992) Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 48(3):533–543PubMedGoogle Scholar
  62. Heinricher MM, Morgan MM, Tortorici V, Fields HL (1994) Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience 63:279–288PubMedGoogle Scholar
  63. Heinricher MM, Tortorici V (1994) Interference with GABA transmission in the rostral ventromedial medulla: disinhibition of off-cells as a central mechanism in nociceptive modulation. Neuroscience 63:533–546PubMedGoogle Scholar
  64. Hershey AD, Burdine D, Kabbouche MA, Powers SW (2011) Genomic expression patterns in medication overuse headaches. Cephalalgia 31:161–171. doi: 10.1177/0333102410373155 PubMedGoogle Scholar
  65. Holguin A, O'Connor KA, Biedenkapp J et al (2004) HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-I (nNOS). Pain 110:517–530. doi: 10.1016/j.pain.2004.02.018 PubMedGoogle Scholar
  66. Holmes GM, Hebert SL, Rogers RC, Hermann GE (2004) Immunocytochemical localization of TNF type 1 and type 2 receptors in the rat spinal cord. Brain Res 1025:210–219. doi: 10.1016/j.brainres.2004.08.020 PubMedGoogle Scholar
  67. Horvath RJ, DeLeo JA (2009) Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 29:998–1005. doi: 10.1523/JNEUROSCI. 4595-08.2009 PubMedCentralPubMedGoogle Scholar
  68. Horvath RJ, Romero-Sandoval EA, De Leo JA (2010) Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150:401–413. doi: 10.1016/j.pain.2010.02.042 PubMedCentralPubMedGoogle Scholar
  69. Hutchinson MR, Coats BD, Lewis SS et al (2008a) Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun 22:1178–1189. doi: 10.1016/j.bbi.2008.05.004 PubMedCentralPubMedGoogle Scholar
  70. Hutchinson MR, Lewis SS, Coats BD et al (2009) Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 23:240–250. doi: 10.1016/j.bbi.2008.09.012 PubMedCentralPubMedGoogle Scholar
  71. Hutchinson MR, Northcutt AL, Chao LW et al (2008b) Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav Immun 22:1248–1256. doi: 10.1016/j.bbi.2008.07.008 PubMedCentralPubMedGoogle Scholar
  72. Hutchinson MR, Northcutt AL, Hiranita T et al (2012) Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 32:11187–11200. doi: 10.1523/JNEUROSCI. 0684-12.2012 PubMedCentralPubMedGoogle Scholar
  73. Hutchinson MR, Shavit Y, Grace PM et al (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810. doi: 10.1124/pr.110.004135 PubMedCentralPubMedGoogle Scholar
  74. Hutchinson MR, Zhang Y, Brown K et al (2008c) Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci 28:20–29. doi: 10.1111/j.1460-9568.2008.06321.x PubMedCentralPubMedGoogle Scholar
  75. Hutchinson MR, Zhang Y, Shridhar M et al (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24:83–95. doi: 10.1016/j.bbi.2009.08.004 PubMedCentralPubMedGoogle Scholar
  76. Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226. doi: 10.1016/j.pharmthera.2005.07.001 PubMedGoogle Scholar
  77. Itoh S, Katsuura G, Maeda Y (1982) Caerulein and cholecystokinin suppress beta-endorphin-induced analgesia in the rat. Eur J Pharmacol 80:421–425PubMedGoogle Scholar
  78. Ji R-R, Gereau RW, Malcangio M, Strichartz GR (2009) MAP kinase and pain. Brain Res Rev 60:135–148. doi: 10.1016/j.brainresrev.2008.12.011 PubMedCentralPubMedGoogle Scholar
  79. Johnson JL, Hutchinson MR, Williams DB, Rolan P (2012) Medication-overuse headache and opioid-induced hyperalgesia: a review of mechanisms, a neuroimmune hypothesis and a novel approach to treatment. Cephalalgia 33:52–64. doi: 10.1177/0333102412467512 PubMedGoogle Scholar
  80. Johnston IN, Milligan ED, Wieseler-Frank J et al (2004) A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci 24:7353–7365. doi: 10.1523/JNEUROSCI. 1850-04.2004 PubMedGoogle Scholar
  81. Juni A, Klein G, Pintar JE, Kest B (2007) Nociception increases during opioid infusion in opioid receptor triple knock-out mice. Neuroscience 147:439–444. doi: 10.1016/j.neuroscience.2007.04.030 PubMedGoogle Scholar
  82. Kahlke V, Angele MK, Ayala A et al (2000) Immune dysfunction following trauma-haemorrhage: influence of gender and age. Cytokine 12:69–77. doi: 10.1006/cyto.1999.0511 PubMedGoogle Scholar
  83. Kao S-C, Zhao X, Lee C-Y et al (2012) Absence of μ opioid receptor mRNA expression in astrocytes and microglia of rat spinal cord. Neuroreport 23:378–384. doi: 10.1097/WNR.0b013e3283522e1b PubMedCentralPubMedGoogle Scholar
  84. Kawasaki Y, Zhang L, Cheng J-K, Ji R-R (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194. doi: 10.1523/JNEUROSCI. 3338-07.2008 PubMedCentralPubMedGoogle Scholar
  85. Kennis K, Kernick D, O’Flynn N (2012) Diagnosis and management of headaches in young people and adults: NICE guideline. Br J Gen Pract 63(613):443–445. doi: 10.3399/bjgp13X670895 Google Scholar
  86. Kepler KL, Kest B, Kiefel JM et al (1989) Roles of gender, gonadectomy and estrous phase in the analgesic effects of intracerebroventricular morphine in rats. Pharmacol Biochem Behav 34:119–127PubMedGoogle Scholar
  87. Kepler KL, Standifer KM, Paul D et al (1991) Gender effects and central opioid analgesia. Pain 45:87–94PubMedGoogle Scholar
  88. Kolesnikov YA, Pick CG, Ciszewska G, Pasternak GW (1993) Blockade of tolerance to morphine but not to kappa opioids by a nitric oxide synthase inhibitor. Proc Natl Acad Sci U S A 90:5162–5166PubMedCentralPubMedGoogle Scholar
  89. Krzanowska EK, Bodnar RJ (1999) Morphine antinociception elicited from the ventrolateral periaqueductal gray is sensitive to sex and gonadectomy differences in rats. Brain Res 821:224–230PubMedGoogle Scholar
  90. Lance F, Parkes C, Wilkinson M (1988) Does analgesic abuse cause headaches de novo? Headache 28:61–62PubMedGoogle Scholar
  91. Li Y, Han JS (1989) Cholecystokinin-octapeptide antagonizes morphine analgesia in periaqueductal gray of the rat. Brain Res 480:105–110PubMedGoogle Scholar
  92. Liu Y, Blackbourn DJ, Chuang LF et al (1992) Effects of in vivo and in vitro administration of morphine sulfate upon rhesus macaque polymorphonuclear cell phagocytosis and chemotaxis. J Pharmacol Exp Ther 263:533–539PubMedGoogle Scholar
  93. Loredo GA, Benton HP (1998) ATP and UTP activate calcium-mobilizing P2U-like receptors and act synergistically with interleukin-1 to stimulate prostaglandin E2 release from human rheumatoid synovial cells. Arthritis Rheum 41:246–255. doi: 10.1002/1529-0131(199802)41:2<246::AID-ART8>3.0.CO;2-I PubMedGoogle Scholar
  94. Machelska H, Ziólkowska B, Mika J et al (1997) Chronic morphine increases biosynthesis of nitric oxide synthase in the rat spinal cord. Neuroreport 8:2743–2747PubMedGoogle Scholar
  95. Mantyh PW, Hunt SP (1984) Evidence for cholecystokinin-like immunoreactive neurons in the rat medulla oblongata which project to the spinal cord. Brain Res 291:49–54PubMedGoogle Scholar
  96. Marriott I, Bost KL, Huet-Hudson YM (2006) Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: a possible mechanism for gender-based differences in endotoxic shock susceptibility. J Reprod Immunol 71:12–27. doi: 10.1016/j.jri.2006.01.004 PubMedGoogle Scholar
  97. McMahon SB, Malcangio M (2009) Current challenges in glia-pain biology. Neuron 64:46–54. doi: 10.1016/j.neuron.2009.09.033 PubMedGoogle Scholar
  98. Meller S, Pechman PS, Gebhart GF, Maves TJ (1992) Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience 50(1):7–10PubMedGoogle Scholar
  99. Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52:127–136PubMedGoogle Scholar
  100. Meng ID, Cao L (2007) From migraine to chronic daily headache: the biological basis of headache transformation. Headache 47(8):1251–1258PubMedGoogle Scholar
  101. Milligan E, Zapata V, Schoeniger D et al (2005) An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur J Neurosci 22:2775–2782. doi: 10.1111/j.1460-9568.2005.04470.x PubMedGoogle Scholar
  102. Milligan ED, Twining C, Chacur M et al (2003) Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 23:1026–1040PubMedGoogle Scholar
  103. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36. doi: 10.1038/nrn2533 PubMedCentralPubMedGoogle Scholar
  104. Milligan ED, Zapata V, Chacur M et al (2004) Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci 20:2294–2302. doi: 10.1111/j.1460-9568.2004.03709.x PubMedGoogle Scholar
  105. Morioka N, Inoue A, Hanada T et al (2002) Nitric oxide synergistically potentiates interleukin-1 beta-induced increase of cyclooxygenase-2 mRNA levels, resulting in the facilitation of substance P release from primary afferent neurons: involvement of cGMP-independent mechanisms. Neuropharmacology 43:868–876PubMedGoogle Scholar
  106. Morioka T, Kalehua AN, Streit WJ (1991) The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 11:966–973. doi: 10.1038/jcbfm.1991.162 PubMedGoogle Scholar
  107. Murphy PM, Baggiolini M, Charo IF et al (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176PubMedGoogle Scholar
  108. Muscoli C, Cuzzocrea S, Ndengele MM et al (2007) Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J Clin Invest 117:3530–3539. doi: 10.1172/JCI32420 PubMedCentralPubMedGoogle Scholar
  109. Muscoli C, Doyle T, Dagostino C et al (2010) Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids. J Neurosci 30:15400–15408. doi: 10.1523/JNEUROSCI. 2391-10.2010 PubMedCentralPubMedGoogle Scholar
  110. Mustafa S, Ayoub MA, Pfleger KDG (2010) Uncovering GPCR heteromer-biased ligands. Drug Discov Today Technol 7:e77–e85. doi: 10.1016/j.ddtec.2010.06.003 Google Scholar
  111. Mustafa S, Pfleger KDG (2011) G protein-coupled receptor heteromer identification technology: identification and profiling of GPCR heteromers. J Lab Autom 16:285–291. doi: 10.1016/j.jala.2011.03.002 PubMedGoogle Scholar
  112. Mustafa S, See HB, Seeber RM et al (2012) Identification and profiling of novel α1A-adrenoceptor-CXC chemokine receptor 2 heteromer. J Biol Chem 287:12952–12965. doi: 10.1074/jbc.M111.322834 PubMedCentralPubMedGoogle Scholar
  113. Nayak D, Huo Y, Kwang WXT et al (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166:132–144. doi: 10.1016/j.neuroscience.2009.12.020 PubMedGoogle Scholar
  114. Oka T, Aou S, Hori T (1994) Intracerebroventricular injection of interleukin-1 beta enhances nociceptive neuronal responses of the trigeminal nucleus caudalis in rats. Brain Res 656:236–244PubMedGoogle Scholar
  115. Okada T, Kajimoto T, Jahangeer S, Nakamura S-I (2009) Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal 21:7–13. doi: 10.1016/j.cellsig.2008.07.011 PubMedGoogle Scholar
  116. Ossipov MH, Lai J, Vanderah TW, Porreca F (2003) Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance. Life Sci 73:783–800PubMedGoogle Scholar
  117. Pan ZZ, Williams JT, Osborne PB (1990) Opioid actions on single nucleus raphe magnus neurons from rat and guinea-pig in vitro. J Physiol Lond 427:519–532PubMedCentralPubMedGoogle Scholar
  118. Pautz A, Franzen R, Dorsch S et al (2002) Cross-talk between nitric oxide and superoxide determines ceramide formation and apoptosis in glomerular cells. Kidney Int 61:790–796. doi: 10.1046/j.1523-1755.2002.00222.x PubMedGoogle Scholar
  119. Pellis NR, Harper C, Dafny N (1986) Suppression of the induction of delayed hypersensitivity in rats by repetitive morphine treatments. Exp Neurol 93:92–97PubMedGoogle Scholar
  120. Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–326. doi: 10.1016/0306-4522(85)90215-5 PubMedGoogle Scholar
  121. Peterson PK, Sharp B, Gekker G et al (1987) Opioid-mediated suppression of interferon-gamma production by cultured peripheral blood mononuclear cells. J Clin Invest 80:824–831. doi: 10.1172/JCI113140 PubMedCentralPubMedGoogle Scholar
  122. Pyne S, Lee SC, Long J, Pyne NJ (2009) Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell Signal 21:14–21. doi: 10.1016/j.cellsig.2008.08.008 PubMedGoogle Scholar
  123. Quan N, He L, Lai W (2003) Endothelial activation is an intermediate step for peripheral lipopolysaccharide induced activation of paraventricular nucleus. Brain Res Bull 59:447–452PubMedGoogle Scholar
  124. Raghavendra V, Rutkowski MD, DeLeo JA (2002) The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci 22:9980–9989PubMedGoogle Scholar
  125. Raghavendra V, Tanga FY, DeLeo JA (2004) Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology 29:327–334. doi: 10.1038/sj.npp.1300315 PubMedGoogle Scholar
  126. Raiteri M, Paudice P (1993) Release of cholecystokinin in the central nervous system. Neurochem Int 26:519–527Google Scholar
  127. Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28:571–573. doi: 10.1016/j.tins.2005.09.001 PubMedGoogle Scholar
  128. Rao SS, Saifi AQ (1985) Influence of testosterone on morphine analgesia in albino rats. Indian J Physiol Pharmacol 29:103–106PubMedGoogle Scholar
  129. Ratka A (1984) Interaction of morphine and steroid hormones in the postirradiation disease in rats. Pol J Pharmacol Pharm 36(1):41–49PubMedGoogle Scholar
  130. Ratka A, Simpkins JW (1990) A modulatory role for luteinizing hormone-releasing hormone in nociceptive responses of female rats. Endocrinology 127:667–673. doi: 10.1210/endo-127-2-667 PubMedGoogle Scholar
  131. Ratka A, Simpkins JW (1991) Effects of estradiol and progesterone on the sensitivity to pain and on morphine-induced antinociception in female rats. Horm Behav 25:217–228PubMedGoogle Scholar
  132. Ravishankar K (2008) Medication overuse headache in India. Cephalalgia 28:1223–1226. doi: 10.1111/j.1468-2982.2008.01731.x PubMedGoogle Scholar
  133. Rettew JA, Huet YM, Marriott I (2009) Estrogens augment cell surface TLR4 expression on murine macrophages and regulate sepsis susceptibility in vivo. Endocrinology 150:3877–3884. doi: 10.1210/en.2009-0098 PubMedGoogle Scholar
  134. Rezayat M, Nikfar S, Zarrindast MR (1994) CCK receptor activation may prevent tolerance to morphine in mice. Eur J Pharmacol 254:21–26PubMedGoogle Scholar
  135. Rock RB, Hu S, Sheng WS, Peterson PK (2006) Morphine stimulates CCL2 production by human neurons. J Neuroinflammation 3:32. doi: 10.1186/1742-2094-3-32 PubMedCentralPubMedGoogle Scholar
  136. Roscic-Mrkic B, Fischer M, Leemann C et al (2003) RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 102:1169–1177. doi: 10.1182/blood-2003-02-0488 PubMedGoogle Scholar
  137. Ryan SM, Maier SF (1988) The estrous cycle and estrogen modulate stress-induced analgesia. Behav Neurosci 102:371–380PubMedGoogle Scholar
  138. Samad TA, Moore KA, Sapirstein A et al (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410:471–475. doi: 10.1038/35068566 PubMedGoogle Scholar
  139. Schildknecht S, Pape R, Müller N et al (2011) Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J Biol Chem 286:4991–5002. doi: 10.1074/jbc.M110.169565 PubMedCentralPubMedGoogle Scholar
  140. Shavit Y, Wolf G, Goshen I et al (2005) Interleukin-1 antagonizes morphine analgesia and underlies morphine tolerance. Pain 115:50–59. doi: 10.1016/j.pain.2005.02.003 PubMedGoogle Scholar
  141. Simpkins CO, Dickey CA, Fink MP (1984) Human neutrophil migration is enhanced by beta-endorphin. Life Sci 34:2251–2255PubMedGoogle Scholar
  142. Smith K (2010) Neuroscience: settling the great glia debate. Nature 468:160–162. doi: 10.1038/468160a PubMedGoogle Scholar
  143. Snyder SH (1992) Nitric oxide: first in a new class of neurotransmitters? Science 257:494–496. doi: 10.1126/science.1353273 PubMedGoogle Scholar
  144. Song P, Zhao ZQ (2001) The involvement of glial cells in the development of morphine tolerance. Neurosci Res 39:281–286PubMedGoogle Scholar
  145. Soucy G, Boivin G, Labrie F, Rivest S (2005) Estradiol is required for a proper immune response to bacterial and viral pathogens in the female brain. J Immunol 174:6391–6398PubMedGoogle Scholar
  146. Sperlágh B, Baranyi M, Haskó G, Vizi ES (2004) Potent effect of interleukin-1 beta to evoke ATP and adenosine release from rat hippocampal slices. J Neuroimmunol 151:33–39. doi: 10.1016/j.jneuroim.2004.02.004 PubMedGoogle Scholar
  147. Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228. doi: 10.1523/JNEUROSCI. 4486-04.2005 PubMedGoogle Scholar
  148. Stievano L, Piovan E, Amadori A (2004) C and CX3C chemokines: cell sources and physiopathological implications. Crit Rev Immunol 24:205–228PubMedGoogle Scholar
  149. Stoffel EC, Ulibarri CM, Craft RM (2003) Gonadal steroid hormone modulation of nociception, morphine antinociception and reproductive indices in male and female rats. Pain 103:285–302. doi: 10.1016/s0304-3959(02)00457-8 PubMedCentralPubMedGoogle Scholar
  150. Suzuki S, Chuang LF, Yau P et al (2002) Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp Cell Res 280(2):192–200. doi: 10.1006/excr.2002.5638 PubMedGoogle Scholar
  151. Szabo I, Chen X-H, Xin L et al (2002) Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci U S A 99:10276–10281. doi: 10.1073/pnas.102327699 PubMedCentralPubMedGoogle Scholar
  152. Szabo I, Wetzel MA, Zhang N et al (2003) Selective inactivation of CCR5 and decreased infectivity of R5 HIV-1 strains mediated by opioid-induced heterologous desensitization. J Leukoc Biol 74(6):1074–1082. doi: 10.1189/jlb.0203067.1 PubMedGoogle Scholar
  153. Takagi K, Fukuda H, Watanabe M (1960) Studies on antitussives. III. (+)-morphine. Yakugaku Zasshi 80:1506–1509Google Scholar
  154. Takayama N, Ueda H (2005) Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J Neurosci 25:430–435. doi: 10.1523/JNEUROSCI. 3170-04.2005 PubMedGoogle Scholar
  155. Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 102:5856–5861. doi: 10.1073/pnas.0501634102 PubMedCentralPubMedGoogle Scholar
  156. Tao F, Tao Y-X, Mao P et al (2003) Intact carrageenan-induced thermal hyperalgesia in mice lacking inducible nitric oxide synthase. Neuroscience 120:847–854PubMedGoogle Scholar
  157. Taub DD, Eisenstein TK, Geller EB et al (1991) Immunomodulatory activity of mu- and kappa-selective opioid agonists. Proc Natl Acad Sci U S A 88:360–364PubMedCentralPubMedGoogle Scholar
  158. Tawfik VL, LaCroix-Fralish ML, Bercury KK et al (2006) Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia 54:193–203. doi: 10.1002/glia.20365 PubMedGoogle Scholar
  159. Thalakoti S, Patil VV, Damodaram S et al (2007) Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47:1008–1023. doi: 10.1111/j.1526-4610.2007.00854.x; discussion 24–5PubMedCentralPubMedGoogle Scholar
  160. Thomas J, Hutchinson MR (2012) Exploring neuroinflammation as a potential avenue to improve the clinical efficacy of opioids. Expert Rev Neurother 12:1311–1324. doi: 10.1586/ern.12.125 PubMedGoogle Scholar
  161. Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29:3518–3528. doi: 10.1523/JNEUROSCI. 5714-08.2009 PubMedCentralPubMedGoogle Scholar
  162. Triantafilou M, Lepper PM, Briault CD et al (2008) Chemokine receptor 4 (CXCR4) is part of the lipopolysaccharide “sensing apparatus”. Eur J Immunol 38:192–203. doi: 10.1002/eji.200636821 PubMedGoogle Scholar
  163. van Epps DE, Saland L (1984) Beta-endorphin and met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis. J Immunol 132:3046–3053PubMedGoogle Scholar
  164. Vanderah TW, Lai J, Yamamura HI, Porreca F (1994) Antisense oligodeoxynucleotide to the CCKB receptor produces naltrindole- and [Leu5]enkephalin antiserum-sensitive enhancement of morphine antinociception. Neuroreport 5:2601PubMedGoogle Scholar
  165. Vanderhaeghen JJ, Signeau JC, Gepts W (1975) New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature 257:604–605PubMedGoogle Scholar
  166. Verge GM, Milligan ED, Maier SF et al (2004) Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci 20:1150–1160. doi: 10.1111/j.1460-9568.2004.03593.x PubMedGoogle Scholar
  167. Viviani B, Bartesaghi S, Gardoni F et al (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23:8692–8700PubMedGoogle Scholar
  168. Wang X, Loram LC, Ramos K et al (2012) Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A 109:6325–6330. doi: 10.1073/pnas.1200130109 PubMedCentralPubMedGoogle Scholar
  169. Wang Z, Ma W, Chabot J-G, Quirion R (2009) Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia. FASEB J 23:2576–2586. doi: 10.1096/fj.08-128348 PubMedGoogle Scholar
  170. Wang Z, Ma W, Chabot J-G, Quirion R (2010) Morphological evidence for the involvement of microglial p38 activation in CGRP-associated development of morphine antinociceptive tolerance. Peptides 31:2179–2184. doi: 10.1016/j.peptides.2010.08.020 PubMedGoogle Scholar
  171. Watkins L, Kinscheck I, Mayer D (1985a) Potentiation of morphine analgesia by the cholecystokinin antagonist proglumide. Brain Res 327:169–180PubMedGoogle Scholar
  172. Watkins LR, Hansen MK, Nguyen KT et al (1999) Dynamic regulation of the proinflammatory cytokine, interleukin-1beta: molecular biology for non-molecular biologists. Life Sci 65:449–481PubMedGoogle Scholar
  173. Watkins LR, Hutchinson MR, Johnston IN, Maier SF (2005) Glia: novel counter-regulators of opioid analgesia. Trends Neurosci 28:661–669. doi: 10.1016/j.tins.2005.10.001 PubMedGoogle Scholar
  174. Watkins LR, Hutchinson MR, Ledeboer A et al (2007) Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun 21:131–146. doi: 10.1016/j.bbi.2006.10.011 PubMedCentralPubMedGoogle Scholar
  175. Watkins LR, Hutchinson MR, Rice KC, Maier SF (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30:581–591. doi: 10.1016/j.tips.2009.08.002 PubMedCentralPubMedGoogle Scholar
  176. Watkins LR, Kinscheck I, Kaufman E, Miller J (1985b) Cholecystokinin antagonists selectively potentiate analgesia induced by endogenous opiates. Brain Res 327:181–190PubMedGoogle Scholar
  177. Waxman AR, Arout C, Caldwell M et al (2009) Acute and chronic fentanyl administration causes hyperalgesia independently of opioid receptor activity in mice. Neurosci Lett 462:68–72. doi: 10.1016/j.neulet.2009.06.061 PubMedGoogle Scholar
  178. Wetzel MA, Steele AD, Eisenstein TK et al (2000) μ-opioid induction of monocyte chemoattractant protein-1, RANTES, and IFN-γ-inducible protein-10 expression in human peripheral blood mononuclear cells. J Immunol 165(11):6519–6524PubMedGoogle Scholar
  179. Wieseler J et al. (2010) Facial allodynia: involvement of glia and potentiation by prior morphine. Program No. 780.4/MM4. Neuroscience Meeting Planner. Society for Neuroscience, San Diego. OnlineGoogle Scholar
  180. Wieseler J et al. (2011) Facial allodynia potentiation by supradural inflammatory mediators and morphine: a model of medication overuse headache. Program no. 178.09/NN19. Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC. OnlineGoogle Scholar
  181. Wiesenfeld-Hallin Z, Xu XJ (1996) The role of cholecystokinin in nociception, neuropathic pain and opiate tolerance. Regul Pept 65:23–28PubMedGoogle Scholar
  182. World Health Organization (1996) Cancer pain relief. World Health Organization, GenevaGoogle Scholar
  183. Wu H-E, Hong J-S, Tseng LF (2007) Stereoselective action of (+)-morphine over (-)-morphine in attenuating the (-)-morphine-produced antinociception via the naloxone-sensitive sigma receptor in the mouse. Eur J Pharmacol 571:145–151. doi: 10.1016/j.ejphar.2007.06.012 PubMedCentralPubMedGoogle Scholar
  184. Wu H-E, Sun H-S, Terashivili M et al (2006) dextro- and levo-morphine attenuate opioid delta and kappa receptor agonist produced analgesia in mu-opioid receptor knockout mice. Eur J Pharmacol 531:103–107. doi: 10.1016/j.ejphar.2005.12.012 PubMedGoogle Scholar
  185. Wu H-E, Thompson J, Sun H-S et al (2005) Antianalgesia: stereoselective action of dextro-morphine over levo-morphine on glia in the mouse spinal cord. J Pharmacol Exp Ther 314:1101–1108. doi: 10.1124/jpet.105.087130 PubMedGoogle Scholar
  186. Xie JY, Herman DS, Stiller C-O et al (2005) Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci 25:409–416. doi: 10.1523/JNEUROSCI. 4054-04.2005 PubMedGoogle Scholar
  187. Xie N, Li H, Wei D et al (2010) Glycogen synthase kinase-3 and p38 MAPK are required for opioid-induced microglia apoptosis. Neuropharmacology 59:444–451. doi: 10.1016/j.neuropharm.2010.06.006 PubMedCentralPubMedGoogle Scholar
  188. Yuan Y, Arnatt CK, El-Hage N, Dever SM, Jacob JC, Selley DE, Hauser KF, Zhang Y (2013) A bivalent ligand targeting the putative mu opioid receptor and chemokine receptor CCR5 heterodimers: binding affinity versus functional activities. Medchemcomm 4(5):847–851. doi: 10.1039/c3md00080j PubMedCentralPubMedGoogle Scholar
  189. Zhang J, Shi XQ, Echeverry S et al (2007) Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 27:12396–12406. doi: 10.1523/JNEUROSCI. 3016-07.2007 PubMedGoogle Scholar
  190. Zhang N, Rogers TJ, Caterina M, Oppenheim JJ (2004) Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons. J Immunol 173:594–599PubMedGoogle Scholar
  191. Zhou Y, Sun YH, Zhang ZW, Han JS (1992) Accelerated expression of cholecystokinin gene in the brain of rats rendered tolerant to morphine. Neuroreport 3:1121–1123PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jacob Thomas
    • 1
  • Sanam Mustafa
    • 2
  • Jacinta Johnson
    • 1
  • Lauren Nicotra
    • 1
  • Mark Hutchinson
    • 2
  1. 1.Discipline of PharmacologySchool of Medical Sciences, University of AdelaideAdelaideAustralia
  2. 2.Discipline of PhysiologySchool of Medical Sciences, University of AdelaideAdelaideAustralia

Personalised recommendations