Advertisement

Predicate Encryption for Multi-dimensional Range Queries from Lattices

  • Romain Gay
  • Pierrick Méaux
  • Hoeteck Wee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9020)

Abstract

We construct a lattice-based predicate encryption scheme for multi-dimensional range and multi-dimensional subset queries. Our scheme is selectively secure and weakly attribute-hiding, and its security is based on the standard learning with errors (LWE) assumption. Multi-dimensional range and subset queries capture many interesting applications pertaining to searching on encrypted data. To the best of our knowledge, these are the first lattice-based predicate encryption schemes for functionalities beyond IBE and inner product.

Keywords

Range Query Security Parameter Encrypt Data Short Matrice Challenge Ciphertext 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional Encryption for Threshold Functions (or, Fuzzy IBE) from Lattices. In: Public Key Cryptography, pp. 280–297 (2012)Google Scholar
  4. 4.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner Product Predicates from Learning with Errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. 5.
    Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract). In: STOC, pp. 99–108 (1996)Google Scholar
  6. 6.
    Alwen, J., Peikert, C.: Generating Shorter Bases for Hard Random Lattices. In: STACS, pp. 75–86 (2009)Google Scholar
  7. 7.
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  9. 9.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1), 97–139 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gay, R., Méaux, P., Wee, H.: Predicate Encryption for Multi-Dimensional Range Queries from Lattices. Cryptology ePrint Archive, Report 2014/965 (2014), http://eprint.iacr.org/
  13. 13.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)Google Scholar
  14. 14.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC, pp. 545–554 (2013), also, Cryptology ePrint Archive, Report 2013/337Google Scholar
  15. 15.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98 (2006)Google Scholar
  16. 16.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: STOC 1989 Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM, New York (1989)Google Scholar
  17. 17.
    Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC. pp. 84–93 (2005)Google Scholar
  20. 20.
    Shi, E., Bethencourt, J., Chan, H.T.H., Song, D.X., Perrig, A.: Multi-Dimensional Range Query over Encrypted Data. In: IEEE Symposium on Security and Privacy, pp. 350–364 (2007)Google Scholar
  21. 21.
    Xagawa, K.: Improved (Hierarchical) Inner-Product Encryption from Lattices. In: Public Key Cryptography, pp. 235–252 (2013)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  1. 1.ENSParisFrance

Personalised recommendations