Advertisement

Simple Functional Encryption Schemes for Inner Products

  • Michel AbdallaEmail author
  • Florian Bourse
  • Angelo De Caro
  • David Pointcheval
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9020)

Abstract

Functional encryption is a new paradigm in public-key encryption that allows users to finely control the amount of information that is revealed by a ciphertext to a given receiver. Recent papers have focused their attention on constructing schemes for general functionalities at expense of efficiency. Our goal, in this paper, is to construct functional encryption schemes for less general functionalities which are still expressive enough for practical scenarios. We propose a functional encryption scheme for the inner-product functionality, meaning that decrypting an encrypted vector \(\mathbf {x}\) with a key for a vector \(\mathbf {y}\) will reveal only \(\langle \mathbf {x},\mathbf {y} \rangle \) and nothing else, whose security is based on the DDH assumption. Despite the simplicity of this functionality, it is still useful in many contexts like descriptive statistics. In addition, we generalize our approach and present a generic scheme that can be instantiated, in addition, under the LWE assumption and offers various trade-offs in terms of expressiveness and efficiency.

Keywords

Functional Encryption Inner-Product Generic Constructions 

References

  1. Abdalla, M., Bellare, M., Neven, G.: Robust Encryption. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  2. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient encryption schemeas. In: Desmedt, Y., (ed.) PKC 2003. LNCS, vol. 2567. pp. 85–99. Springer, Heidlburg (2003)Google Scholar
  3. Boyle, E., Chung, K.-M., Pass, R.: On Extractability Obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  5. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility results, impossibility results and the quest for a general definition. Cryptology ePrint Archive, Report 2012/515 (2012). http://eprint.iacr.org/2012/515
  6. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  9. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  10. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985) CrossRefGoogle Scholar
  11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  12. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. Cryptology ePrint Archive, Report 2013/451 (2013). http://eprint.iacr.org/2013/451
  14. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryption from multilinear maps. Cryptology ePrint Archive, Report 2014/622 (2014). http://eprint.iacr.org/2014/622
  15. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-Collusion IBE from Key Homomorphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds) ACM CCS 2006, pp. 89–98. ACM Press (October / November 2006). Available as Cryptology ePrint Archive Report 2006/309Google Scholar
  17. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. Kurosawa, K.: Multi-recipient Public-Key Encryption with Shortened Ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  19. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  20. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556
  21. Okamoto, T., Takashima, K.: Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds) 37th ACM STOC, pp. 84–93. ACM Press (May 2005)Google Scholar
  23. Rothblum, R.: Homomorphic Encryption: From Private-Key to Public-Key. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 219–234. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  24. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985) CrossRefGoogle Scholar
  25. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  26. Tessaro, S., Wilson, D.A.: Bounded-Collusion Identity-Based Encryption from Semantically-Secure Public-Key Encryption: Generic Constructions with Short Ciphertexts. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 257–274. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  27. Waters, B.: Functional Encryption for Regular Languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  28. Waters, B.: A punctured programming approach to adaptively secure functional encryption. Cryptology ePrint Archive, Report 2014/588 (2014). http://eprint.iacr.org/2014/588

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Michel Abdalla
    • 1
    Email author
  • Florian Bourse
    • 1
  • Angelo De Caro
    • 1
  • David Pointcheval
    • 1
  1. 1.ENS, CNRS, INRIA, and PSLParis Cedex 05France

Personalised recommendations