Advertisement

A Tamper and Leakage Resilient von Neumann Architecture

  • Sebastian FaustEmail author
  • Pratyay Mukherjee
  • Jesper Buus Nielsen
  • Daniele Venturi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9020)

Abstract

We present a universal framework for tamper and leakage resilient computation on a random access machine (RAM). The RAM has one CPU that accesses a storage, which we call the disk. The disk is subject to leakage and tampering. So is the bus connecting the CPU to the disk. We assume that the CPU is leakage and tamper-free. For a fixed value of the security parameter, the CPU has constant size. Therefore the code of the program to be executed is stored on the disk, i.e., we consider a von Neumann architecture. The most prominent consequence of this is that the code of the program executed will be subject to tampering.

We construct a compiler for this architecture which transforms any keyed primitive into a RAM program where the key is encoded and stored on the disk along with the program to evaluate the primitive on that key. Our compiler only assumes the existence of a so-called continuous non-malleable code, and it only needs black-box access to such a code. No further (cryptographic) assumptions are needed. This in particular means that given an information theoretic code, the overall construction is information theoretic secure.

Although it is required that the CPU is tamper and leakage proof, its design is independent of the actual primitive being computed and its internal storage is non-persistent, i.e., all secret registers are reset between invocations. Hence, our result can be interpreted as reducing the problem of shielding arbitrary complex computations to protecting a single, simple yet universal component.

Keywords

Security Parameter Program Counter Secret State Online Phase Real Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. IACR Cryptology ePrint Archive 2013:201 (2013)Google Scholar
  2. 2.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes resistant to permutations and perturbations. IACR Cryptology ePrint Archive 2014:316 (2014)Google Scholar
  3. 3.
    Bellare, Mihir, Cash, David: Pseudorandom functions and permutations provably secure against related-key attacks. In: Rabin, Tal (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684. Springer, Heidelberg (2010) Google Scholar
  4. 4.
    Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: EUROCRYPT, pp. 491–506 (2003)Google Scholar
  5. 5.
    Bellare, Mihir, Paterson, Kenneth G., Thomson, Susan: RKA security beyond the linear barrier: IBE, encryption and signatures. In: Wang, Xiaoyun, Sako, Kazue (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012) Google Scholar
  6. 6.
    Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ICS, pp. 155–168 (2014)Google Scholar
  7. 7.
    Cheraghchi, Mahdi, Guruswami, Venkatesan: Non-malleable coding against bit-wise and split-state tampering. In: Lindell, Yehuda (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464. Springer, Heidelberg (2014) Google Scholar
  8. 8.
    Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-malleable codes. In: TCC (2015, To appear)Google Scholar
  9. 9.
    Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Self-destruct non-malleability. IACR Cryptology ePrint Archive 2014:866 (2014)Google Scholar
  10. 10.
    Dachman-Soled, Dana, Kalai, Yael Tauman: Securing circuits against constant-rate tampering. In: Safavi-Naini, Reihaneh, Canetti, Ran (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 533–551. Springer, Heidelberg (2012) Google Scholar
  11. 11.
    Dachman-Soled, Dana, Kalai, Yael Tauman: Securing circuits and protocols against 1/poly(k) tampering rate. In: Lindell, Yehuda (ed.) TCC 2014. LNCS, vol. 8349, pp. 540–565. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updatable non-malleable codes and their applications. In: TCC (2015, To appear)Google Scholar
  13. 13.
    Damgård, Ivan, Faust, Sebastian, Mukherjee, Pratyay, Venturi, Daniele: Bounded tamper resilience: how to go beyond the algebraic barrier. In: Sako, Kazue, Sarkar, Palash (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013) Google Scholar
  14. 14.
    Dziembowski, Stefan, Faust, Sebastian: Leakage-resilient circuits without computational assumptions. In: Cramer, Ronald (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247. Springer, Heidelberg (2012) Google Scholar
  15. 15.
    Dziembowski, Stefan, Kazana, Tomasz, Obremski, Maciej: Non-malleable codes from two-source extractors. In: Canetti, Ran, Garay, Juan A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013) Google Scholar
  16. 16.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–452 (2010)Google Scholar
  17. 17.
    Faust, Sebastian, Mukherjee, Pratyay, Nielsen, Jesper Buus, Venturi, Daniele: Continuous non-malleable codes. In: Lindell, Yehuda (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer, Heidelberg (2014) Google Scholar
  18. 18.
    Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient von Neumann architecture. Cryptology ePrint Archive, Report 2014/338 (2014). http://eprint.iacr.org/
  19. 19.
    Faust, Sebastian, Mukherjee, Pratyay, Venturi, Daniele, Wichs, Daniel: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: Nguyen, Phong Q., Oswald, Elisabeth (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Faust, Sebastian, Pietrzak, Krzysztof, Venturi, Daniele: Tamper-proof circuits: how to trade leakage for tamper-resilience. In: Aceto, Luca, Henzinger, Monika, Sgall, Jiří (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 391–402. Springer, Heidelberg (2011) Google Scholar
  21. 21.
    Faust, Sebastian, Rabin, Tal, Reyzin, Leonid, Tromer, Eran, Vaikuntanathan, Vinod: Protecting Circuits from Leakage: the Computationally-Bounded and Noisy Cases. In: Gilbert, Henri (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010) Google Scholar
  22. 22.
    Goldwasser, S., Rothblum, G.N.:. How to compute in the presence of leakage. In: FOCS, pp. 31–40 (2012)Google Scholar
  23. 23.
    Ishai, Yuval, Prabhakaran, Manoj, Sahai, Amit, Wagner, David: Private circuits II: keeping secrets in tamperable circuits. In: Vaudenay, Serge (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006) Google Scholar
  24. 24.
    Ishai, Yuval, Sahai, Amit, Wagner, David: Private circuits: securing hardware against probing attacks. In: Boneh, Dan (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003) Google Scholar
  25. 25.
    Kalai, Yael Tauman, Kanukurthi, Bhavana, Sahai, Amit: Cryptography with tamperable and leaky memory. In: Rogaway, Phillip (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390. Springer, Heidelberg (2011) Google Scholar
  26. 26.
    Kiayias, Aggelos, Tselekounis, Yiannis: Tamper resilient circuits: the adversary at the gates. In: Sako, Kazue, Sarkar, Palash (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 161–180. Springer, Heidelberg (2013) Google Scholar
  27. 27.
    Liu, Feng-Hao, Lysyanskaya, Anna: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, Reihaneh, Canetti, Ran (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012) Google Scholar
  28. 28.
    Miles, E., Viola, E.: Shielding circuits with groups. In: STOC, pp. 251–260 (2013)Google Scholar
  29. 29.
    Prouff, Emmanuel, Rivain, Matthieu: Masking against side-channel attacks: a formal security proof. In: Johansson, Thomas, Nguyen, Phong Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013) Google Scholar
  30. 30.
    Wee, H.: Public key encryption against related key attacks. In: Public Key Cryptography, pp. 262–279 (2012)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Sebastian Faust
    • 1
    Email author
  • Pratyay Mukherjee
    • 2
  • Jesper Buus Nielsen
    • 2
  • Daniele Venturi
    • 3
  1. 1.Security and Cryptography LaboratoryEPFLLausanneSwitzerland
  2. 2.Department of Computer ScienceAarhus UniversityAarhusDenmark
  3. 3.Department of Computer ScienceSapienza University of RomeRomeItaly

Personalised recommendations