Secure Efficient History-Hiding Append-Only Signatures in the Standard Model

  • Benoît Libert
  • Marc Joye
  • Moti Yung
  • Thomas Peters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9020)

Abstract

As formalized by Kiltz et al. (ICALP ’05), append-only signatures (AOS) are digital signature schemes where anyone can publicly append extra message blocks to an already signed sequence of messages. This property is useful, e.g., in secure routing, in collecting response lists, reputation lists, or petitions. Bethencourt, Boneh and Waters (NDSS ’07) suggested an interesting variant, called history-hiding append-only signatures (HH-AOS), which handles messages as sets rather than ordered tuples. This HH-AOS primitive is useful when the exact order of signing needs to be hidden. When free of subliminal channels (i.e., channels that can tag elements in an undetectable fashion), it also finds applications in the storage of ballots on an electronic voting terminals or in other archival applications (such as the record of petitions, where we want to hide the influence among messages). However, the only subliminal-free HH-AOS to date only provides heuristic arguments in terms of security: Only a proof in the idealized (non-realizable) random oracle model is given. This paper provides the first HH-AOS construction secure in the standard model. Like the system of Bethencourt et al., our HH-AOS features constant-size public keys, no matter how long messages to be signed are, which is atypical (we note that secure constructions often suffer from a space penalty when compared to their random-oracle-based counterpart). As a second result, we show that, even if we use it to sign ordered vectors as in an ordinary AOS (which is always possible with HH-AOS), our system provides considerable advantages over existing realizations. As a third result, we show that HH-AOS schemes provide improved identity-based ring signatures (i.e., in prime order groups and with a better efficiency than the state-of-the-art schemes).

Keywords

Homomorphic signatures Provable security Privacy Unlinkability Standard model Superset predicates Archive integrity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design. Cryptology ePrint Archive: Report 2010/133 (2010)Google Scholar
  2. 2.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010) Google Scholar
  3. 3.
    Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012) Google Scholar
  4. 4.
    Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013) Google Scholar
  5. 5.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20. Springer, Heidelberg (2012) Google Scholar
  6. 6.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012) Google Scholar
  7. 7.
    Au, M.-H., Liu, J., Susilo, W., Zhou, J.: Realizing fully secure unrestricted ID-based ring signature in the standard model from HIBE. IEEE Trans. Information Forensics and Security 8(12) (2013)Google Scholar
  8. 8.
    Bajaj, S., Sion, R.: HIFS: History independence for file systems. In: ACM-CCS 2013. ACM Press (2013)Google Scholar
  9. 9.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009) Google Scholar
  10. 10.
    Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. J. Cryptology 22(1) (2009); Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993. ACM Press (1993)Google Scholar
  12. 12.
    Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996) Google Scholar
  13. 13.
    Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. J. Crypotology 22(1) (2009); In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Bethencourt, J., Boneh, D., Waters, D.: Cryptographic methods for storing ballots on a voting machine. In: NDSS 2007. Internet Society (2007)Google Scholar
  15. 15.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005) Google Scholar
  16. 16.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004) Google Scholar
  17. 17.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. J. Comput. 32(3) (2001); Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)Google Scholar
  18. 18.
    Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470. Springer, Heidelberg (2008) Google Scholar
  19. 19.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001) Google Scholar
  20. 20.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003) Google Scholar
  21. 21.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: STOC 1998. ACM Press (1998)Google Scholar
  22. 22.
    Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007) Google Scholar
  23. 23.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012) Google Scholar
  24. 24.
    Desmedt, Y.: Computer security by redefining what a computer is. In: New Security Paradigms Workshop, NSPW 1993 (1993)Google Scholar
  25. 25.
    Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash functions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013) Google Scholar
  26. 26.
    Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006) Google Scholar
  27. 27.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013) Google Scholar
  28. 28.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS 2013. IEEE Computer Society (2013)Google Scholar
  29. 29.
    Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: an approach for proving security from static assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012) Google Scholar
  30. 30.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002) Google Scholar
  31. 31.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006) Google Scholar
  32. 32.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008) Google Scholar
  33. 33.
    Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008) Google Scholar
  34. 34.
    Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013) Google Scholar
  35. 35.
    Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014) Google Scholar
  36. 36.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002) Google Scholar
  37. 37.
    Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-only signatures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005) Google Scholar
  38. 38.
    Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011) Google Scholar
  39. 39.
    Libert, B., Joye, M., Yung, M., Peters, T.: Secure efficient history-hiding append-only signatures in the standard model. Cryptology ePrint Archive (2015). http://eprint.iacr.org/
  40. 40.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006) Google Scholar
  41. 41.
    Micciancio, D.: Oblivious data structures: Applications to cryptography. In: STOC 1997. ACM Press (1997)Google Scholar
  42. 42.
    Molnar, D., Kohno, T., Sastry, N., Wagner, D.: Tamper-evident, history-independent, subliminal-free data structures on PROM storage -or- How to store ballots on a voting machine. In: S&P 2006. IEEE Computer Society (2006)Google Scholar
  43. 43.
    Moran, T., Naor, M., Segev, G.: Deterministic history-independent strategies for storing information on write-once memories. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 303–315. Springer, Heidelberg (2007) Google Scholar
  44. 44.
    Naor, M., Teague, V.: Anti-persistence: History independent data structures. In: STOC 2001. ACM Press (2001)Google Scholar
  45. 45.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001) Google Scholar
  46. 46.
    Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007) Google Scholar
  47. 47.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985) Google Scholar
  48. 48.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005) Google Scholar
  49. 49.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009) Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Benoît Libert
    • 1
  • Marc Joye
    • 2
  • Moti Yung
    • 3
  • Thomas Peters
    • 4
  1. 1.Laboratoire LIPEcole Normale Supérieure de LyonLyonFrance
  2. 2.TechnicolorLos AltosUSA
  3. 3.Columbia University and Google Inc.New YorkUSA
  4. 4.Ecole Normale SupérieureParisFrance

Personalised recommendations