Advertisement

Tightly-Secure Signatures from Chameleon Hash Functions

  • Olivier Blazy
  • Saqib A. Kakvi
  • Eike Kiltz
  • Jiaxin Pan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9020)

Abstract

We give a new framework for obtaining signatures with a tight security reduction from standard hardness assumptions. Concretely, we show that any Chameleon Hash function can be transformed into a (binary) tree-based signature scheme with tight security. The transformation is in the standard model, i.e., it does not make use of any random oracle. For specific assumptions (such as RSA, Diffie-Hellman and Short Integer Solution (SIS)) we further manage to obtain a more efficient flat-tree construction. Our framework explains and generalizes most of the existing schemes as well as providing a generic means for constructing tight signature schemes based on arbitrary assumptions, which improves the standard Merkle tree transformation. Moreover, we obtain the first tightly secure signature scheme from the SIS assumption and several schemes based on Diffie-Hellman in the standard model.

Some of our signature schemes can (using known techniques) be combined with Groth-Sahai proof methodology to yield tightly secure and efficient simulation-sound NIZK proofs of knowledge and CCA-secure encryption in the multi-user/-challenge setting under classical assumptions.

Keywords

Signature Standard model Tight reduction Chameleon hash 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013) Google Scholar
  2. 2.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010) Google Scholar
  3. 3.
    Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. Cryptology ePrint Archive, Report 2014/797 (2014)Google Scholar
  4. 4.
    Bellare, M., Ristov, T.: A characterization of chameleon hash functions and new, efficient designs. Journal of Cryptology 27(4), 799–823 (October 2014)Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993Google Scholar
  6. 6.
    Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996) Google Scholar
  7. 7.
    Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and Fiat-Shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007) Google Scholar
  8. 8.
    Blazy, O., Kakvi, S., Kiltz, E., Pan. J.: Tightly-secure signatures from chameleon hash functions. Cryptology ePrint Archive, Report 2014/1021 (2014)Google Scholar
  9. 9.
    Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) Identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004) Google Scholar
  11. 11.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (April 2008)Google Scholar
  12. 12.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004) Google Scholar
  13. 13.
    Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98–110. Springer, Heidelberg (2003) Google Scholar
  14. 14.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998Google Scholar
  15. 15.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010) Google Scholar
  16. 16.
    Catalano, D., Gennaro, R.: Cramer-damgård signatures revisited: Efficient flat-tree signatures based on factoring. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 313–327. Springer, Heidelberg (2005) Google Scholar
  17. 17.
    Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013) Google Scholar
  18. 18.
    Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 339–356. Springer, Heidelberg (2006) Google Scholar
  19. 19.
    Cramer, R., Damgård, I.B.: New generation of secure and practical RSA-based signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996) Google Scholar
  20. 20.
    Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: ACM CCS 1999, pp. 46–51. ACM Press, November 1999Google Scholar
  21. 21.
    Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005) Google Scholar
  22. 22.
    Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its applications. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 234–246. Springer, Heidelberg (1994) Google Scholar
  23. 23.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013) Google Scholar
  24. 24.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008Google Scholar
  25. 25.
    Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight reductions to the Diffie-Hellman problems. Journal of Cryptology 20(4), 493–514 (October 2007)Google Scholar
  26. 26.
    Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110. Springer, Heidelberg (1987) Google Scholar
  27. 27.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (April 1988)Google Scholar
  28. 28.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006) Google Scholar
  29. 29.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008) Google Scholar
  30. 30.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012) Google Scholar
  31. 31.
    Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666. Springer, Heidelberg (2011) Google Scholar
  32. 32.
    Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under standard assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 333–350. Springer, Heidelberg (2009) Google Scholar
  33. 33.
    Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer, Heidelberg (2009) Google Scholar
  34. 34.
    Katz, J.: Digital Signatures. Springer (2010)Google Scholar
  35. 35.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet Society, February 2000Google Scholar
  36. 36.
    Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 241–254. Springer, Heidelberg (2003) Google Scholar
  37. 37.
    Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990) Google Scholar
  38. 38.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012) Google Scholar
  39. 39.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October 2004Google Scholar
  40. 40.
    Mohassel, P.: One-time signatures and chameleon hash functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer, Heidelberg (2011) Google Scholar
  41. 41.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st ACM STOC, pp. 33–43. ACM Press, May 1989Google Scholar
  42. 42.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990Google Scholar
  43. 43.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 22nd ACM STOC, pp. 387–394. ACM Press, May 1990Google Scholar
  44. 44.
    Schäge, S.: Tight proofs for signature schemes without random oracles. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer, Heidelberg (2011) Google Scholar
  45. 45.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005) Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Olivier Blazy
    • 1
  • Saqib A. Kakvi
    • 2
  • Eike Kiltz
    • 2
  • Jiaxin Pan
    • 2
  1. 1.XLimUniversité de LimogesLimogesFrance
  2. 2.Horst Görtz Institute for IT-Security and Faculty of MathematicsRuhr-University BochumBochumGermany

Personalised recommendations