The Message of Quantum Science pp 131-193 | Cite as
Quantum Probability Theory and the Foundations of Quantum Mechanics
Abstract
By and large, people are better at coining expressions than at filling them with interesting, concrete contents. Thus, it may not be very surprising that there are many professional probabilists who may have heard the expression but do not appear to be aware of the need to develop “quantum probability theory” into a thriving, rich, useful field featured at meetings and conferences on probability theory. Although our aim, in this essay, is not to contribute new results on quantum probability theory, we hope to be able to let the reader feel the enormous potential and richness of this field. What we intend to do, in the following, is to contribute some novel points of view to the “foundations of quantum mechanics”, using mathematical tools from “quantum probability theory” (such as the theory of operator algebras).
Keywords
Quantum Mechanic Physical System Physical Quantity Pure State Operator AlgebraNotes
Acknowledgements
A rough first draft of this paper has been written during J.F.’s stay at the School of Mathematics of the Institute for Advanced Study (Princeton), 2012/2013. His stay has been supported by the ‘Fund for Math’ and the ‘Monell Foundation’. He is deeply grateful to Thomas C. Spencer for his most generous hospitality. He acknowledges useful discussions with Ph. Blanchard, P. Deift, S. Kochen and S. Lomonaco. He thanks D.Bernard for drawing his attention to [6] and W. Faris for correspondence. He is grateful to D. Buchholz, D. Dürr, S. Goldstein, J. Yngvason and N. Zanghi for numerous friendly and instructive discussions, encouragement and for the privilege to occasionally disagree in mutual respect and friendship.
References
- 1.Adler, S.L., Brody, D.C., Brun, T.A., Hughston, L.P.: Martingale models for quantum state reduction. J. Phys. A 34(42), 8795 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 2.Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: Predictions and primitive ontology in quantum foundations: a study of examples. Br. J. Philos. Sci. (2013)Google Scholar
- 3.Araki, H.: Multiple time analyticity of a quantum statistical state satisfying the KMS boundary condition. Publ. Res. I. Math. Sci. 4(2), 361–371 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
- 4.Bannier, U.: Intrinsic algebraic characterization of space-time structure. Int. J. Theor. Phys. 33(9), 1797–1809 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
- 5.Barchielli, A., Paganoni, A.: On the asymptotic behaviour of some stochastic differential equations for quantum states. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 6(02), 223–243 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Bauer, M., Bernard, D.: Convergence of repeated quantum non-demolition measurements and wave-function collapse. Phys. Rev. A 84(4), 44103 (2011)CrossRefADSMathSciNetGoogle Scholar
- 7.Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)Google Scholar
- 8.Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447–452 (1966)CrossRefADSzbMATHGoogle Scholar
- 9.Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
- 10.Blanchard, P., Olkiewicz, R.: Decoherence induced transition from quantum to classical dynamics. Rev. Math. Phys. 15(3), 217–244 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
- 11.Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys. 38(11–12), 803–827 (1926)CrossRefADSGoogle Scholar
- 12.Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1–2. Springer, New York (2003)Google Scholar
- 13.Brunetti, R., Fredenhagen, K.: When does a detector click? Phys. Rev. A 66, 044101 (2001)CrossRefADSMathSciNetGoogle Scholar
- 14.Buchholz, D.: Collision theory for massless bosons. Commun. Math. Phys. 52(2), 147–173 (1977)CrossRefADSMathSciNetGoogle Scholar
- 15.Buchholz, D., Grundling, H.: Lie algebras of derivations and resolvent algebras. Commun. Math. Phys. 320(2), 455–467 (2012)CrossRefADSMathSciNetGoogle Scholar
- 16.Buchholz, D., Grundling, H.: Quantum systems and resolvent algebras (2013). arXiv preprint arXiv:1306.0860Google Scholar
- 17.Buchholz, D., Roberts, J.E.: New light on infrared problems: sectors, statistics, symmetries and spectrum (2013). arXiv preprint arXiv:1304.2794Google Scholar
- 18.Colbeck, R., Renner, R.: Quantum theory cannot be extended. Bull. Am. Phys. Soc. 56(1), 513 (2011)Google Scholar
- 19.Connes, A.: Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. 6(2), 133–252 (1973)zbMATHMathSciNetGoogle Scholar
- 20.Connes, A., Narnhofer, H., Thirring, W.: Dynamical entropy of C*algebras and von Neumann algebras. Commun. Math. Phys. 112(4), 691–719 (1987)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 21.De Roeck, W., Fröhlich, J.: Diffusion of a massive quantum particle coupled to a quasi-free thermal medium. Commun. Math. Phys. 303(3), 613–707 (2011)CrossRefADSzbMATHGoogle Scholar
- 22.De Roeck, W., Kupiainen, A.: Approach to ground state and time-independent photon bound for massless spin-boson models. Ann. Henri Poincaré 14(2), 253–311 (2013)CrossRefADSzbMATHGoogle Scholar
- 23.Dirac, P.A.M.: The Lagrangian in quantum mechanics. Phys. Z. 3(1), 64–72 (1933)Google Scholar
- 24.Dowker, F., Johnston, S., Sorkin, R.D.: Hilbert spaces from path integrals. J. Phys. A 43(27), 275–302 (2010)CrossRefMathSciNetGoogle Scholar
- 25.Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, New York (2009)zbMATHGoogle Scholar
- 26.Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys.-Berlin 322(6), 132–148 (1905)CrossRefADSGoogle Scholar
- 27.Einstein, A.: Zur Quantentheorie der Strahlung. Phys. Z. 18, 121–128 (1917)Google Scholar
- 28.Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957)CrossRefADSMathSciNetGoogle Scholar
- 29.Faupin, J., Fröhlich, J., Schubnel, B.: On the probabilistic nature of quantum mechanics and the notion of closed systems to appear in Commun. Math. Phys. (2014, submitted)Google Scholar
- 30.Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals: Emended Edition. Dover, Mineola (2012)Google Scholar
- 31.Fröhlich, J.: Abschied von Determinismus und Realismus in der Physik des 20. Jahrhunderts. Akademie der Wissenschaften und der Literatur zu Mainz, Abhandlungen der Mathematisch-naturwissenschaftlichen Klasse 1, 1–22 (2011)Google Scholar
- 32.Fröhlich, J., Schubnel, B.: Do we understand quantum mechanics—finally? In: Wolfgang Reiter et al.(eds.), Erwin Schrödinger50 years after, Zrich: European Mathematical Society Publ., 2013, pages 37–84.CrossRefGoogle Scholar
- 33.Fröhlich, J., Schubnel, B.: Paper in preparationGoogle Scholar
- 34.Fröhlich, J., Schubnel, B.: On the preparation of states in quantum mechanics. J. Math. Phys. (to appear)Google Scholar
- 35.Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic completeness for Rayleigh scattering. Ann. Henri Poincaré 3(1), 107–170 (2002)CrossRefADSzbMATHGoogle Scholar
- 36.Fuchs, C.A.: Qbism, the perimeter of quantum Bayesianism (2010). arXiv preprint arXiv:1003.5209Google Scholar
- 37.Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47(8), 3345–3382 (1993)CrossRefADSMathSciNetGoogle Scholar
- 38.Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 39.Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6(6), 885–893 (1957)zbMATHMathSciNetGoogle Scholar
- 40.Glimm, J.: Type I C*-algebras. Ann. Math. 73(3), 572–612 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
- 41.Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1), 219–272 (1984)CrossRefADSzbMATHGoogle Scholar
- 42.Guerlin, C., Bernu, J., Deleglise, S., Sayrin, C., Gleyzes, S., Kuhr, S., Brune, M., Raimond, J.M., Haroche, S.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448(7156), 889–893 (2007)CrossRefADSGoogle Scholar
- 43.Haag, R.: Local Quantum Physics. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
- 44.Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5(7), 848–861 (1964)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 45.Haagerup, U.: Connes bicentralizer problem and uniqueness of the injective factor of type III1. Acta Math. 158(1), 95–148 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
- 46.Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. In: Original Scientific Papers, pp. 382–396. Springer, Berlin (1985)Google Scholar
- 47.Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 45(2), 237–248 (1972)Google Scholar
- 48.Isham, C.J., Linden, N., Schreckenberg, S.: The classification of decoherence functionals: an analog of Gleason’s theorem. J. Math. Phys. 35, 6360 (1994)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 49.Janssens, B., Maassen, H.: Information transfer implies state collapse. J. Phys. A 39(31), 9845 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 50.Kochen, S.: A reconstruction of Quantum Mechanics (to be published)Google Scholar
- 51.Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)zbMATHMathSciNetGoogle Scholar
- 52.Kolmogorov, A.N.: Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124, 754–755 (1959)zbMATHMathSciNetGoogle Scholar
- 53.Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 54.Lüders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. Phys.-Leipzig 443(5–8), 322–328 (1950)CrossRefADSGoogle Scholar
- 55.Maassen, H.: Quantum probability and quantum information theory. In: Quantum Information, Computation and Cryptography, pp. 65–108. Springer, New York (2010)Google Scholar
- 56.Maassen, H., Kümmerer, B.: Purification of Quantum Trajectories. Lecture Notes-Monograph Series, pp. 252–261 (2006)Google Scholar
- 57.Mott, N.F.: The wave mechanics of alpha-ray tracks. Proc. R. Soc. Lond. Ser. A 126(800), 79–84 (1929)CrossRefADSzbMATHGoogle Scholar
- 58.Neveu, J.: Martingales à Temps Discret. Masson, Paris (1972)Google Scholar
- 59.Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
- 60.Penrose, R.: Wavefunction collapse as a real gravitational effect. In: Mathematical Physics, 2000, pp. 266–282. Imperial College Press, London (2000)Google Scholar
- 61.Peres, A.: Quantum Theory: Concepts and Methods. Springer, New York (1995)zbMATHGoogle Scholar
- 62.Roepstorff, G.: Quantum dynamical entropy. In: Chaos-the Interplay Between Stochastic and Deterministic Behaviour, pp. 305–312. Springer, New York (1995)Google Scholar
- 63.Rose, B.: Ad Reinhardt: Art as Art, The Selected Writings of Ad Reinhardt. University of California Press, Los Angeles (1991)Google Scholar
- 64.Schwinger, J.: The algebra of microscopic measurement. Proc. Natl. Acad. Sci. USA 45(10), 1542–1553 (1959)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 65.Sinai, Ya.G.: On the concept of entropy of a dynamical system. Dokl. Akad. Nauk SSSR 124, 768–771 (1959)Google Scholar
- 66.Styer, D.F., Balkin, M.S., Becker, K.M., Burns, M.R., Dudley, C.E., Forth, S.T., Gaumer, J.S., Kramer, M.A., Oertel, D.C., Park, L.H., et al.: Nine formulations of quantum mechanics. Am. J. Phys. 70(3), 288–297 (2002)CrossRefADSGoogle Scholar
- 67.Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Springer, Berlin/Heidelberg/New York (1970)zbMATHGoogle Scholar
- 68.Takesaki, M.: Conditional expectations in von Neumann algebras. J. Funct. Anal. 9(3), 306–321 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
- 69.Takesaki, M.: Theory of Operator Algebras, vol. 1. Springer, Berlin (2002)zbMATHGoogle Scholar
- 70.Takesaki, M.: Theory of Operator Algebras, vol. 2. Springer, Berlin (2003)Google Scholar
- 71.Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadronic J. Suppl. 8(4), 329–345 (1993)zbMATHMathSciNetGoogle Scholar
- 72.von Baeyer, H.C.: Quantum weirdness? It’s all in your mind. Sci. Am. 308(6), 46–51 (2013)CrossRefGoogle Scholar
- 73.Werner, R.: Arrival time observables in quantum mechanics. Ann. I. H. Poincaré-Phy. 47(4), 429–449 (1987)zbMATHGoogle Scholar
- 74.
- 75.Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement. Princeton University Press, Princeton (1983)CrossRefGoogle Scholar
- 76.Wigner, E.P.: The Collected Works of Eugene Paul Wigner. Springer, New York (1993)Google Scholar