Advertisement

Quantum Probability Theory and the Foundations of Quantum Mechanics

  • Jürg FröhlichEmail author
  • Baptiste Schubnel
Part of the Lecture Notes in Physics book series (LNP, volume 899)

Abstract

By and large, people are better at coining expressions than at filling them with interesting, concrete contents. Thus, it may not be very surprising that there are many professional probabilists who may have heard the expression but do not appear to be aware of the need to develop “quantum probability theory” into a thriving, rich, useful field featured at meetings and conferences on probability theory. Although our aim, in this essay, is not to contribute new results on quantum probability theory, we hope to be able to let the reader feel the enormous potential and richness of this field. What we intend to do, in the following, is to contribute some novel points of view to the “foundations of quantum mechanics”, using mathematical tools from “quantum probability theory” (such as the theory of operator algebras).

Keywords

Quantum Mechanic Physical System Physical Quantity Pure State Operator Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

A rough first draft of this paper has been written during J.F.’s stay at the School of Mathematics of the Institute for Advanced Study (Princeton), 2012/2013. His stay has been supported by the ‘Fund for Math’ and the ‘Monell Foundation’. He is deeply grateful to Thomas C. Spencer for his most generous hospitality. He acknowledges useful discussions with Ph. Blanchard, P. Deift, S. Kochen and S. Lomonaco. He thanks D.Bernard for drawing his attention to [6] and W. Faris for correspondence. He is grateful to D. Buchholz, D. Dürr, S. Goldstein, J. Yngvason and N. Zanghi for numerous friendly and instructive discussions, encouragement and for the privilege to occasionally disagree in mutual respect and friendship.

References

  1. 1.
    Adler, S.L., Brody, D.C., Brun, T.A., Hughston, L.P.: Martingale models for quantum state reduction. J. Phys. A 34(42), 8795 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: Predictions and primitive ontology in quantum foundations: a study of examples. Br. J. Philos. Sci. (2013)Google Scholar
  3. 3.
    Araki, H.: Multiple time analyticity of a quantum statistical state satisfying the KMS boundary condition. Publ. Res. I. Math. Sci. 4(2), 361–371 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bannier, U.: Intrinsic algebraic characterization of space-time structure. Int. J. Theor. Phys. 33(9), 1797–1809 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Barchielli, A., Paganoni, A.: On the asymptotic behaviour of some stochastic differential equations for quantum states. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 6(02), 223–243 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bauer, M., Bernard, D.: Convergence of repeated quantum non-demolition measurements and wave-function collapse. Phys. Rev. A 84(4), 44103 (2011)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)Google Scholar
  8. 8.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447–452 (1966)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  10. 10.
    Blanchard, P., Olkiewicz, R.: Decoherence induced transition from quantum to classical dynamics. Rev. Math. Phys. 15(3), 217–244 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys. 38(11–12), 803–827 (1926)CrossRefADSGoogle Scholar
  12. 12.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1–2. Springer, New York (2003)Google Scholar
  13. 13.
    Brunetti, R., Fredenhagen, K.: When does a detector click? Phys. Rev. A 66, 044101 (2001)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Buchholz, D.: Collision theory for massless bosons. Commun. Math. Phys. 52(2), 147–173 (1977)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Buchholz, D., Grundling, H.: Lie algebras of derivations and resolvent algebras. Commun. Math. Phys. 320(2), 455–467 (2012)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Buchholz, D., Grundling, H.: Quantum systems and resolvent algebras (2013). arXiv preprint arXiv:1306.0860Google Scholar
  17. 17.
    Buchholz, D., Roberts, J.E.: New light on infrared problems: sectors, statistics, symmetries and spectrum (2013). arXiv preprint arXiv:1304.2794Google Scholar
  18. 18.
    Colbeck, R., Renner, R.: Quantum theory cannot be extended. Bull. Am. Phys. Soc. 56(1), 513 (2011)Google Scholar
  19. 19.
    Connes, A.: Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. 6(2), 133–252 (1973)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Connes, A., Narnhofer, H., Thirring, W.: Dynamical entropy of C*algebras and von Neumann algebras. Commun. Math. Phys. 112(4), 691–719 (1987)CrossRefADSzbMATHMathSciNetGoogle Scholar
  21. 21.
    De Roeck, W., Fröhlich, J.: Diffusion of a massive quantum particle coupled to a quasi-free thermal medium. Commun. Math. Phys. 303(3), 613–707 (2011)CrossRefADSzbMATHGoogle Scholar
  22. 22.
    De Roeck, W., Kupiainen, A.: Approach to ground state and time-independent photon bound for massless spin-boson models. Ann. Henri Poincaré 14(2), 253–311 (2013)CrossRefADSzbMATHGoogle Scholar
  23. 23.
    Dirac, P.A.M.: The Lagrangian in quantum mechanics. Phys. Z. 3(1), 64–72 (1933)Google Scholar
  24. 24.
    Dowker, F., Johnston, S., Sorkin, R.D.: Hilbert spaces from path integrals. J. Phys. A 43(27), 275–302 (2010)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, New York (2009)zbMATHGoogle Scholar
  26. 26.
    Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys.-Berlin 322(6), 132–148 (1905)CrossRefADSGoogle Scholar
  27. 27.
    Einstein, A.: Zur Quantentheorie der Strahlung. Phys. Z. 18, 121–128 (1917)Google Scholar
  28. 28.
    Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Faupin, J., Fröhlich, J., Schubnel, B.: On the probabilistic nature of quantum mechanics and the notion of closed systems to appear in Commun. Math. Phys. (2014, submitted)Google Scholar
  30. 30.
    Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals: Emended Edition. Dover, Mineola (2012)Google Scholar
  31. 31.
    Fröhlich, J.: Abschied von Determinismus und Realismus in der Physik des 20. Jahrhunderts. Akademie der Wissenschaften und der Literatur zu Mainz, Abhandlungen der Mathematisch-naturwissenschaftlichen Klasse 1, 1–22 (2011)Google Scholar
  32. 32.
    Fröhlich, J., Schubnel, B.: Do we understand quantum mechanics—finally? In: Wolfgang Reiter et al.(eds.), Erwin Schrödinger50 years after, Zrich: European Mathematical Society Publ., 2013, pages 37–84.CrossRefGoogle Scholar
  33. 33.
    Fröhlich, J., Schubnel, B.: Paper in preparationGoogle Scholar
  34. 34.
    Fröhlich, J., Schubnel, B.: On the preparation of states in quantum mechanics. J. Math. Phys. (to appear)Google Scholar
  35. 35.
    Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic completeness for Rayleigh scattering. Ann. Henri Poincaré 3(1), 107–170 (2002)CrossRefADSzbMATHGoogle Scholar
  36. 36.
    Fuchs, C.A.: Qbism, the perimeter of quantum Bayesianism (2010). arXiv preprint arXiv:1003.5209Google Scholar
  37. 37.
    Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47(8), 3345–3382 (1993)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
  39. 39.
    Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6(6), 885–893 (1957)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Glimm, J.: Type I C*-algebras. Ann. Math. 73(3), 572–612 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1), 219–272 (1984)CrossRefADSzbMATHGoogle Scholar
  42. 42.
    Guerlin, C., Bernu, J., Deleglise, S., Sayrin, C., Gleyzes, S., Kuhr, S., Brune, M., Raimond, J.M., Haroche, S.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448(7156), 889–893 (2007)CrossRefADSGoogle Scholar
  43. 43.
    Haag, R.: Local Quantum Physics. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  44. 44.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5(7), 848–861 (1964)CrossRefADSzbMATHMathSciNetGoogle Scholar
  45. 45.
    Haagerup, U.: Connes bicentralizer problem and uniqueness of the injective factor of type III1. Acta Math. 158(1), 95–148 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. In: Original Scientific Papers, pp. 382–396. Springer, Berlin (1985)Google Scholar
  47. 47.
    Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 45(2), 237–248 (1972)Google Scholar
  48. 48.
    Isham, C.J., Linden, N., Schreckenberg, S.: The classification of decoherence functionals: an analog of Gleason’s theorem. J. Math. Phys. 35, 6360 (1994)CrossRefADSzbMATHMathSciNetGoogle Scholar
  49. 49.
    Janssens, B., Maassen, H.: Information transfer implies state collapse. J. Phys. A 39(31), 9845 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  50. 50.
    Kochen, S.: A reconstruction of Quantum Mechanics (to be published)Google Scholar
  51. 51.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)zbMATHMathSciNetGoogle Scholar
  52. 52.
    Kolmogorov, A.N.: Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124, 754–755 (1959)zbMATHMathSciNetGoogle Scholar
  53. 53.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)CrossRefADSzbMATHMathSciNetGoogle Scholar
  54. 54.
    Lüders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. Phys.-Leipzig 443(5–8), 322–328 (1950)CrossRefADSGoogle Scholar
  55. 55.
    Maassen, H.: Quantum probability and quantum information theory. In: Quantum Information, Computation and Cryptography, pp. 65–108. Springer, New York (2010)Google Scholar
  56. 56.
    Maassen, H., Kümmerer, B.: Purification of Quantum Trajectories. Lecture Notes-Monograph Series, pp. 252–261 (2006)Google Scholar
  57. 57.
    Mott, N.F.: The wave mechanics of alpha-ray tracks. Proc. R. Soc. Lond. Ser. A 126(800), 79–84 (1929)CrossRefADSzbMATHGoogle Scholar
  58. 58.
    Neveu, J.: Martingales à Temps Discret. Masson, Paris (1972)Google Scholar
  59. 59.
    Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  60. 60.
    Penrose, R.: Wavefunction collapse as a real gravitational effect. In: Mathematical Physics, 2000, pp. 266–282. Imperial College Press, London (2000)Google Scholar
  61. 61.
    Peres, A.: Quantum Theory: Concepts and Methods. Springer, New York (1995)zbMATHGoogle Scholar
  62. 62.
    Roepstorff, G.: Quantum dynamical entropy. In: Chaos-the Interplay Between Stochastic and Deterministic Behaviour, pp. 305–312. Springer, New York (1995)Google Scholar
  63. 63.
    Rose, B.: Ad Reinhardt: Art as Art, The Selected Writings of Ad Reinhardt. University of California Press, Los Angeles (1991)Google Scholar
  64. 64.
    Schwinger, J.: The algebra of microscopic measurement. Proc. Natl. Acad. Sci. USA 45(10), 1542–1553 (1959)CrossRefADSzbMATHMathSciNetGoogle Scholar
  65. 65.
    Sinai, Ya.G.: On the concept of entropy of a dynamical system. Dokl. Akad. Nauk SSSR 124, 768–771 (1959)Google Scholar
  66. 66.
    Styer, D.F., Balkin, M.S., Becker, K.M., Burns, M.R., Dudley, C.E., Forth, S.T., Gaumer, J.S., Kramer, M.A., Oertel, D.C., Park, L.H., et al.: Nine formulations of quantum mechanics. Am. J. Phys. 70(3), 288–297 (2002)CrossRefADSGoogle Scholar
  67. 67.
    Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Springer, Berlin/Heidelberg/New York (1970)zbMATHGoogle Scholar
  68. 68.
    Takesaki, M.: Conditional expectations in von Neumann algebras. J. Funct. Anal. 9(3), 306–321 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  69. 69.
    Takesaki, M.: Theory of Operator Algebras, vol. 1. Springer, Berlin (2002)zbMATHGoogle Scholar
  70. 70.
    Takesaki, M.: Theory of Operator Algebras, vol. 2. Springer, Berlin (2003)Google Scholar
  71. 71.
    Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadronic J. Suppl. 8(4), 329–345 (1993)zbMATHMathSciNetGoogle Scholar
  72. 72.
    von Baeyer, H.C.: Quantum weirdness? It’s all in your mind. Sci. Am. 308(6), 46–51 (2013)CrossRefGoogle Scholar
  73. 73.
    Werner, R.: Arrival time observables in quantum mechanics. Ann. I. H. Poincaré-Phy. 47(4), 429–449 (1987)zbMATHGoogle Scholar
  74. 74.
  75. 75.
    Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement. Princeton University Press, Princeton (1983)CrossRefGoogle Scholar
  76. 76.
    Wigner, E.P.: The Collected Works of Eugene Paul Wigner. Springer, New York (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, HIT K42.3, ETH ZürichZürichSwitzerland
  2. 2.Departement MathematikETH ZürichZürichSwitzerland

Personalised recommendations