Deployment and Performance Study of an Ad Hoc Network Protocol for Intelligent Video Sensing in Precision Agriculture

  • Carlos Cambra
  • Juan R. Díaz
  • Jaime LloretEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8629)


Recent advances in technology applied to agriculture have made possible the Precision Agriculture (PA). It has been widely demonstrated that precision agriculture provides higher productivity with lower costs. The goal of this paper is to show the deployment of a real-time precision sprayer which uses video sensing captured by lightweight UAVs (unmanned aerial vehicles) forming ad hoc network. It is based on a geo-reference system that takes into account weeds inside of a mapped area. The ad hoc network includes devices such as AR Drones, a laptop and a sprayer in a tractor. The experiment was carried out in a corn field with different locations selected to represent the diverse densities of weeds that can be found in the field. The deployed system allows saving high percentage of herbicide, reducing the cost spent in fertilizers and increasing the quality of the product.


Precision Agriculture UAV Video sensing Geo-references Weeds Ad Hoc Network Protocol 


  1. 1.
    Garcia, M., Coll, H., Bri, D., Lloret, J.: Using MANET protocols in wireless sensor and actor networks. In: The Second International Conference on Sensor Technologies and Applications (SENSORCOMM 2008), Cap Esterel, France, 25–31 August 2008Google Scholar
  2. 2.
    Garcia, M., Bri, D., Sendra, S., Lloret, J.: Practical deployments of wireless sensor networks: a survey. J. Adv. Netw. Serv. 3(1&2), 170–185 (2010)Google Scholar
  3. 3.
    Bri, D., Garcia, M., Lloret, J., Dini, P.: Real deployments of wireless sensor networks. In: The Third International Conference on Sensor Technologies and Applications (Sensorcomm 2009), Atenas (Grecia), 18–23 June 2009Google Scholar
  4. 4.
    Lloret, J., Palau, C., Boronat, F., Tomas, J.: Improving networks using group-based topologies. Comput. Commun. 31(14), 3438–3450 (2008)CrossRefGoogle Scholar
  5. 5.
    Lopes, P., Salvador, P., Nogueira, A.: Methodologies for network topology discovery and detection of MAC and IP spoofing attacks. Netw. Protoc. Algorithms 5(3), 153–197 (2013)CrossRefGoogle Scholar
  6. 6.
    Liu, Y., Xu, B.: Energy-efficient distributed multi-sensor scheduling based on energy balance in wireless sensor networks. Adhoc Sens. Wirel. Netw. 20(3–4), 307–328 (2014)Google Scholar
  7. 7.
    Liao, Z., Wang, J., Zhang, S., Zhang, X.: A deterministic sensor placement scheme for full coverage and connectivity without boundary effect in wireless sensor networks. Adhoc Sens. Wirel. Netw. 19(3–4), 327–351 (2013)Google Scholar
  8. 8.
    Karim, L., Anpalagan, A., Nasser, N., Almhana, J.: Sensor-based M2 M agriculture monitoring systems for developing countries: state and challenges. Netw. Protoc. Algorithms 5(3), 68–86 (2013)CrossRefGoogle Scholar
  9. 9.
    Lloret, J., Bosch, I., Sendra, S., Serrano, A.: A wireless sensor network for vineyard monitoring that uses image processing. Sensors 11(6), 6165–6196 (2011)CrossRefGoogle Scholar
  10. 10.
    European Commission, Overview of Common Agricultural Policy (CAP) Reform 2014–2020. (December 2013). Accessed 18 March 2014
  11. 11.
    Cambra Baseca, C., Diaz, J. R., Lloret, J.: Communication Ad Hoc protocol for intelligent video sensing using AR drones. In: IEEE Ninth International Conference on Mobile Ad-hoc and Sensor Networks (MSN 2013), Dalian (China), 11–25 December 2013Google Scholar
  12. 12.
    Koger, C.H., Shaw, D.R., Watson, C.E., Reddy, K.N.: Detecting late-season weed infestations in soybean (Glycine max). Weed Technol 17, 696–704 (2003)CrossRefGoogle Scholar
  13. 13.
    Zhang, C., Kovacs, J.: The application of small unmanned aerial systems for precision agriculture: a review. Prec Agric 13, 693–712 (2012)CrossRefGoogle Scholar
  14. 14.
    Christensen, S., Sogaard, H.T., Kudsk, P., Norremark, M., Lund, I., Nadimi, E.S.: Site-specific weed control technologies. Weed Res. 49(3), 233–241 (2009)CrossRefGoogle Scholar
  15. 15.
    Slaughter, D.C., Giles, D.K., Downey, D.: Autonomous robotic weed control systems: a review. Comput. Electron. Agric. 61, 63–78 (2008)CrossRefGoogle Scholar
  16. 16.
    Canales Compes, M., Gallego Martinez, J.R., Hernández Solana, A., Valdovinos Bardaji, A.: QoS provision in mobile Ad Hoc Networks with an adaptive cross-layer architecture. ACM/Springer Wirel. Netw. 15(8), 1165–1187 (2009)CrossRefGoogle Scholar
  17. 17.
    Kang, D.S., Griswold, N.C., Kehtarnavaz, N.: An invariant traffic sign recognition system based on sequential color processing and geometrical transformation. In: IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 88–93, 21–24 April 1994Google Scholar
  18. 18.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)CrossRefGoogle Scholar
  19. 19.
    Krajnık, T., Vonásek, V., Fišer, D., Faigl, J.: AR-drone as a platform for robotic research and education. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161, pp. 172–186. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    MAVLink Micro Air Vehicle Communication Protocol.
  21. 21.
    Rosati, S., Krizélecki, K., Traynard, L., Rimoldi, B.: Speed-aware routing for UAV Ad-Hoc networks. mobile communications laboratory. In: École Polytechnique Féderale de Laussane (EPFL), Laussane, SwitzerlandGoogle Scholar
  22. 22.
    FFmpeg multimedia framework. (2014). Accessed 18 March 2014
  23. 23.
    Open Source Computer Vision Library. (2014). Accessed 18 March 2014
  24. 24.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision With the OpenCV Library, p. 580. O’Reilly Media, Inc., Cambridge, September 2008Google Scholar
  25. 25.
    Suganthe, R.C., Balasubramanie, P.: Improving QoS in delay tolerant mobile Ad Hoc network using multiple message ferries. Netw. Protoc. Algorithms 3(4), 32–53 (2011)Google Scholar
  26. 26.
    Chalouf, M.A., Mbarek, N., Krief, F.: Quality of Service and security negotiation for autonomous management of next generation networks. Netw. Protoc. Algorithms 3(2), 54–86 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of San JorgeSaragossaSpain
  2. 2.University Polithecnic of ValenciaValenciaSpain

Personalised recommendations