Skip to main content

Pyrolyse

  • Chapter
  • First Online:
Stoffliche Nutzung von Braunkohle

Zusammenfassung

Unter Pyrolyse wird die thermochemische Umwandlung von Energierohstoffen durch thermische Zersetzung unter Sauerstoffausschluss verstanden. Der Pyrolyseprozess ist sowohl als Einzelprozess als auch als Teilschritt anderer thermochemischer Konversionsprozesse von großer technischer Bedeutung. Ausgehend von Betrachtungen zu Methoden der Charakterisierung des Pyrolyseverhaltens von Energierohstoffen werden labortechnische Untersuchungen zur Bildung von Pyrolyseölen und deren hochleistungsanalytischen Charakterisierung sowie Möglichkeiten zur katalytischen Beeinflussung des Pyrolyseprozesses bis in den Technikumsmaßstab vorgestellt. Die kinetische Beschreibung der Kohlepyrolyse und deren Einbindung in die Vergasung werden ebenfalls betrachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Das beobachtete m/z Verhältnis in einem Massenspektrum mit der höchsten relativen Intensität.

  2. 2.

    Allerdings betrifft das nicht deren Verhältnis, welches in der Regel mit (nH /nC)<2,2 beschränkt wird.

  3. 3.

    Im Gegensatz zum „Abrollen“ durchmischt sich die Partikelschicht beim „Abrutschen“ lokal nur wenig. Der Übergang zwischen den Regimen hängt im Wesentlichen von Durchmesser und Drehzahl des Reaktors sowie den Partikeleigenschaften ab.

  4. 4.

    Die Volumenschrumpfung von Weichbraunkohle bei 600 °C beträgt zwischen 40 und 50 %, wogegen die lineare Schrumpfung nur ca. 20 % ausmacht.

  5. 5.

    Der an der Kohlekörnung gemessene dynamische Schüttwinkel soll auch für die korrespondierende Kokskörnung gelten.

Literatur

  1. Aboyade AO, Carrier M, Meyer EL, Knoetze H, Görgens JF (2013) Slow and pressurized co-pyrolysis of coal and agricultural residues. Energ Convers Manage 65:198–207

    Article  Google Scholar 

  2. Ahrendt P, van Heek K-H (1981) Comparative investigations of coal pyrolysis under inert gas and H2 at low and high heating rates and pressures up to 10 MPa. Fuel 60:779–787

    Article  Google Scholar 

  3. Alonso MJG, Alvarez D, Borrego AG, Menéndez R, Marbán G (2001) Systematic effects of coal rank and type on the kinetics of coal pyrolysis. Energy Fuels 15:413–428

    Article  Google Scholar 

  4. ANSYS Fluenttm 12 (2010) Kommerzieller Strömungslöser. ANSYS, Inc., Canonsburg, PA

    Google Scholar 

  5. ANSYS Fluenttm 14 (2011) Fluent 14 Theory Guide. ANSYS, Inc., Canonsburg, PA

    Google Scholar 

  6. Anthony DB, Howard JB (1976) Coal devolatilization and hydrogasification. AIChE J 22(4):625–656. https://doi.org/10.1002/aic.690220403

    Article  Google Scholar 

  7. Arenillas A, Rubiera F, Pis J (1999) Simultaneous thermogravimetric–mass spectrometric study on the pyrolysis behaviour of different rank coals. J Anal Appl Pyrolysis 50:31–46

    Article  Google Scholar 

  8. Backreedy R, Habib R, Jones J, Pourkashanian M, Williams A (1999) An extended coal combustion model. Fuel 78(14):1745–1754. https://doi.org/10.1016/S0016-2361(99)00123-4

    Article  Google Scholar 

  9. Bayerbach R (2006) Über die Struktur der oligomeren Bestandteile von Flash-Pyrolyseölen aus Biomasse. Dissertation, Universität Hamburg

    Google Scholar 

  10. Blansky SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263

    Article  Google Scholar 

  11. Blazsó M, Székely T, Till F, Várhegyi G, Jakab E, Szabó P (1985) Pyrolysis-gas chromatographic spectrometric and thermogravimetric-mass spectrometric investigation of brown coals. J Anal Appl Pyrol 8:255–269

    Article  Google Scholar 

  12. Brooks JD, Durie RA, Sternhell S (1957) Chemistry of brown coals. III. Pyrolytic reactions. Aust J Basic Appl Sci 9:308–320

    Google Scholar 

  13. Bunthoff D, Wanzel W, van Heek K-H, Jüntgen H (1983) Bildungskinetik leichter Aromaten bei Pyrolyse von Steinkohle in Stickstoff- und Wasserstoffatmosphäre. Erdöl Kohle Erdgas Petrochemie 36:326–332

    Google Scholar 

  14. Cai J, Liu R (2008) New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresource Technol 99(8):2795–2799. https://doi.org/10.1016/j.biortech.2007.06.033

    Article  Google Scholar 

  15. Cai J, Jin C, Yang S, Chen Y (2011) Logistic distributed activation energy model – Part 1: Derivation and numerical parametric study. Bioresource Technol 102(2):1556–1561. https://doi.org/10.1016/j.biortech.2010.08.079

    Article  Google Scholar 

  16. Cai J, Yang S, Li T (2011) Logistic distributed activation energy model – Part 2: Application to cellulose pyrolysis. Bioresource Technol 102(3):3642–3644. https://doi.org/10.1016/j.biortech.2010.11.073

    Article  Google Scholar 

  17. Carlsen L, Christiansen JV (1995) Flash pyrolysis of coals – a new approach of classification. J Anal Appl Pyrol 35:77–91

    Article  Google Scholar 

  18. Chan WR, Kelbon M, Krieger BB (1985) Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel 64:1505–1513

    Article  Google Scholar 

  19. Chen JC, Niksa S (1992) Coal devolatilization during rapid transient heating 1: Primary devolatilization. Energy Fuel 6(3):254–264. https://doi.org/10.1021/ef00033a004

    Article  Google Scholar 

  20. Christiansen JV, Feldthus A, Carlsen L (1995) Flash pyrolysis of coals. Temperature-dependent product distribution. J Anal Appl Pyrol 32:51–63

    Article  Google Scholar 

  21. Collin G, Zander M (1983) Aspekte moderner Steinkohlenteerchemie. Chem unserer Zeit 17:181–189

    Article  Google Scholar 

  22. Crawford LR, Morrison JD (1968) Computer methods in analytical mass spectrometry. Empirical identification of molecular class. Anal Chem 40:1469–1474

    Article  Google Scholar 

  23. de Souza-Santos ML (2004) Solid fuels combustion and gasification: modeling, simulation and equipment operation. CRC Press, New York

    Book  Google Scholar 

  24. Deutsches Institut für Normung e.V. (1994) DIN 51007 Thermische Analyse (TA) – Differenzthermoanalyse (DTA) – Grundlagen. Beuth-Verlag, Berlin, 00.06.1994

    Google Scholar 

  25. Deutsches Institut für Normung e.V. (2003) DIN ISO 9277 Bestimmung der spezifischen Oberfläche von Feststoffen durch Gasadsorption nach dem BET-Verfahren. Beuth-Verlag, Berlin, 00.05.2003

    Google Scholar 

  26. Deutsches Institut für Normung e.V. (2005) DIN 51005 Thermische Analyse (TA) – Begriffe. Beuth-Verlag, Berlin, 00.08.2005

    Google Scholar 

  27. Deutsches Institut für Normung e.V. (2005) DIN 51006 Thermische Analyse (TA) – Thermogravimetrie (TG) – Grundlagen. Beuth-Verlag, Berlin, 00.07.2005

    Google Scholar 

  28. Deutsches Institut für Normung e.V. (2010) DIN EN ISO 11357-1 Kunststoffe – Dynamische Differenz-Thermoanalyse (DSC) – Teil 1: Allgemeine Grundlagen. Beuth-Verlag, Berlin, 00.03.2010

    Google Scholar 

  29. Di Blasi C (1996) Kinetic and heat transfer control in the slow and flash pyrolysis of solids. Ind Eng Chem Res 35:37–46

    Article  Google Scholar 

  30. Dong WY, Sun YJ, He H-Y, Long YC (1999) Synthesis and structural characterization of B-Al-ZSM-5 zeolite from boron–silicon porous glass in the vapor phase. Microp Mesop Mat 32(1–2):93–100

    Article  Google Scholar 

  31. Dreisewerd K (2003) The desorption process in MALDI. Chem Rev 103:395–426

    Article  Google Scholar 

  32. Eaton A, Smoot L, Hill S, Eatough C (1999) Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog Energ Combust 25(4):387–436. https://doi.org/10.1016/S0360-1285(99)00008-8

    Article  Google Scholar 

  33. Ericsson I, Lattimer RP (1989) Pyrolysis nomenclature. J Anal Appl Pyrol 14:219–221

    Article  Google Scholar 

  34. Exner H (1989) Einfluss von Metalldotierungen (Ni, Cu) auf das katalytische Verfahren der Zeolithe Faujasit (Y), Mordenit und ZSM-5 am Beispiel der n-Heptanumwandlung. Dissertation, Technische Hochschule Darmstadt, 58

    Google Scholar 

  35. Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM (1990) Chemical percolation model for devolatilization 2: Temperature and heating rate effects on product yields. Energy Fuel 4(1):4–60. https://doi.org/10.1021/ef00019a010

    Article  Google Scholar 

  36. Fletcher TH, Kerstein AR, Pugmire RJ, Solum MS, Grant DM (1992) A chemical percolation model for devolatilization: summary. Technical report. Combustion Research Facility, Sandia National Laboratories Livermore, California. http://www.et.byu.edu/~tom/cpd/CPD_Summary.pdf. Zugegriffen: 09. Nov. 2016

  37. Fletcher TH, Kerstein AR, Pugmire RJ, Solum MS, Grant DM (1992) Chemical percolation model for devolatilization 3. Direct use of 13C NMR data to predict effects of coal type. Energy Fuel 6(4):414–431. https://doi.org/10.1021/ef00034a011

    Article  Google Scholar 

  38. Furimsky E, Vancea L, Belanger R (1984) Effect of coal rank on structure of tars from low-temperature pyrolysis of Canadian coals. Ind Eng Chem Prod Res Dev 23:134–140

    Article  Google Scholar 

  39. Gadiou R, Bouzidi Y, Prado G (2002) The devolatilisation of millimeter sized coal particles at high heating rate: the influence of pressure on the structure and reactivity of the char. Fuel 81:2121–2130

    Article  Google Scholar 

  40. García AN, Font R, Marcilla A (1992) Kinetic studies of the primary pyrolysis of municipal solid waste in a Pyroprobe 1000. J Anal Appl Pyrol 23:99–119

    Article  Google Scholar 

  41. Gavalas GR (1982) Coal pyrolysis; Coal science and technology, Bd 4. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  42. Gavalas GR, Cheong PH-K, Jain R (1981) Model of coal pyrolysis 1: Qualitative development. Ind Eng Chem Fund 20(2):113–122. https://doi.org/10.1021/i100002a001

    Article  Google Scholar 

  43. Gavalas GR, Jain R, Cheong PH-K (1981) Model of coal pyrolysis 2: Quantitative formulation and results. Ind Eng Chem Fund 20(2):122–132. https://doi.org/10.1021/i100002a002

    Article  Google Scholar 

  44. Genetti D, Fletcher TH, Pugmire RJ (1999) Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content. Energy Fuel 13(1):60–68.https://doi.org/10.1021/ef980074k

    Article  Google Scholar 

  45. Ghobadian A, Vasquez SA (2007) A general purpose implicit coupled algorithm for the solution of eulerian multiphase transport equation. International Conference on Multiphase Flow, Leipzig, Deutschland

    Google Scholar 

  46. Glass HD (1954) Investigation of rank in coal by differential thermal analysis. Econ Geol 49:294–309

    Article  Google Scholar 

  47. Gold PI (1980) Thermal analysis of exothermic processes in coal pyrolysis. Thermochimica Acta 42:135–152

    Article  Google Scholar 

  48. Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR (1989) Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuel 3(2):175–186. https://doi.org/10.1021/ef00014a011

    Article  Google Scholar 

  49. Greer D, Houdek M, Pittmann R, Woodcock J (2002) Solutions for increasing propylene production – maximizing propylene yields in catalytic fluid catalytic cracking and related technologies. Erdöl Erdgas Kohle 118:242–246

    Google Scholar 

  50. Gürüz GA, Üçtepe Ü, Durusoy T (2004) Mathematical modeling of thermal decomposition of coal. J Anal Appl Pyrol 71(2):537–551. https://doi.org/10.1016/j.jaap.2003.08.007

    Article  Google Scholar 

  51. Haarmann A (1956) Zusammenhänge zwischen den flüchtigen Bestandteilen der Kohle und den Verkokungserzeugnissen. Brennstoffchemie 37:301–310

    Google Scholar 

  52. Haenel MW (1992) Recent progress in coal structure research. Fuel 71:1211–1223

    Article  Google Scholar 

  53. Haenel MW, Collin G, Zander M (1989) Kohlechemie – Stand, Forschungsrichtungen und Perspektiven (1). Erdöl Erdgas Kohle 105:71–74

    Google Scholar 

  54. Hanbaba P, Jüntgen H, Peters W (1968) Nicht-isotherme Reaktionskinetik der Kohlenpyrolyse Teil II: Erweiterung der Theorie der Gasabspaltung und experimentelle Bestätigung an Steinkohlen. Brennstoffchemie 49:368–376

    Google Scholar 

  55. Hartgers WA, Damsté JSS, de Leeuw JW (1995) Curie-point pyrolysis of sodium salts of functionalized fatty acids. J Anal Appl Pyrol 34:191–217

    Article  Google Scholar 

  56. Hashimoto N, Kurose R, Hwang S-M, Tsuji H, Shirai H (2012) A numerical simulation of pulverized coal combustion employing a tabulated-devolatilization-process model (TDP model). Combust Flame 159(1):353–366. https://doi.org/10.1016/j.combustflame.2011.05.024

    Article  Google Scholar 

  57. Hashimoto N, Kurose R, Shirai H (2012) Numerical simulation of pulverized coal jet flame employing the TDP model. Fuel 97:277–287. https://doi.org/10.1016/j.fuel.2012.03.005

    Article  Google Scholar 

  58. Hayashi J, Takahashi H, Doi S, Kumagai H, Chiba T, Yoshida T, Tsutsumi A (2000) Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield. Energy Fuels 14:400–408

    Article  Google Scholar 

  59. Heiligenstaedt W (1966) Wärmetechnische Berechnungen für Industrieöfen, 4. Aufl. Verlag Stahleisen, Essen

    Google Scholar 

  60. Hemminger WF, Cammenga HK (1989) Methoden der thermischen Analyse. Springer-Verlag, Berlin

    Book  Google Scholar 

  61. Hodek W, Kirchstein J, van Heek K-H (1991) Identification of pyrolysis reactions by the comparison of coal macerals and model polymers, in 1991 International Conference on Coal Science Proceedings. Butterworth-Heinemann, Oxford, S 492–495

    Chapter  Google Scholar 

  62. Hoffmann R, Pan W (1990) Combining DSC and TG for measuring heats of reaction. Thermochimica Acta 166:251–265

    Article  Google Scholar 

  63. Hu H, Zhou Q, Zhu S, Meyer B, Krzack S, Chen G (2004) Product distribution and sulfur behavior in coal pyrolysis. Fuel Process Technol 85:849–861

    Article  Google Scholar 

  64. Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG, Qian K (2001) Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal Chem 73:4676–4681

    Article  Google Scholar 

  65. Hüttinger K, Michenfelder A (1987) Fuel 66:1164

    Article  Google Scholar 

  66. Irfan MF, Usman MR, Kusakabe K (2011) Coal gasification in CO2 atmosphere and its kinetics since 1948: a brief review. Energy 36:12–40

    Article  Google Scholar 

  67. Jansen JC, Koegler JK, van Bekkum H, Calis HPA, van den Bleek CM, Kapteijn F, Moulijin JA, Geus ER, van der Puil N (1998) Zeolitic coatings and their potential use in catalysis. Microp Mesop Mat 21:213–226

    Article  Google Scholar 

  68. Jones WP, Lindstedt RP (1988) Global reaction schemes for hydrocarbon combustion. Combust Flame 73(3):233–249. https://doi.org/10.1016/0010-2180(88)90021-1

    Article  Google Scholar 

  69. Jüntgen H, van Heek KH (1979) An update of German non-isothermal coal pyrolysis work. Fuel Process Technol 2:261–293

    Article  Google Scholar 

  70. Jupudi RS, Zamansky V, Fletcher TH (2009) Prediction of light gas composition in coal devolatilization. Energy Fuel 23(6):3063–3067. https://doi.org/10.1021/ef9001346

    Article  Google Scholar 

  71. Kaiser M (1986) Primär- und Sekundärreaktionen bei der Pyrolyse und Hydropyrolyse von Steinkohlen unter hohen Aufheizgeschwindigkeiten. Dissertation, Universität-GHS Essen

    Google Scholar 

  72. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse. Springer, Berlin

    Book  Google Scholar 

  73. Kendrick E (1963) A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem 35:2146–2154

    Article  Google Scholar 

  74. Kerstein AR, Niksa S (1987) Polymer scission with irreversible reattachment: a kinetic model of pyrolysis with char formation. Macromolecules 20(8):1811–1818. https://doi.org/10.1021/ma00174a019

    Article  Google Scholar 

  75. Kestel M (2016) Numerical modeling of moving carbonaceous particle conversion in hot environments. Dissertation. TU Bergakademie Freiberg

    Google Scholar 

  76. Klose E, Kuchling T, Born M (1987) Brennstofftechnische Arbeitsmappe – Spezifische Wärmekapazität. Energietechnik 37(4):A 6/1

    Google Scholar 

  77. Kobayashi H, Howard JB, Sarofim AF (1977) Coal devolatilization at high temperatures. Symp Int Combust 16(1):411–425. https://doi.org/10.1016/S0082-0784(77)80341-X

    Article  Google Scholar 

  78. Koch W (2007) Entwicklung eines thermisch-chemischen Prozesses zur Verwertung von Abfällen aus Elektro- und Elektronikaltgeräten – die „Haloclean“-Pyrolyse. Dissertation, Forschungszentrum Karlsruhe GmbH/Universität Stuttgart, FZKA-7301

    Google Scholar 

  79. Kök MV (2002) Thermal analysis applications in fossil fuel science. Literature survey. J Therm Anal Calorim 68:1061–1077

    Article  Google Scholar 

  80. Kök MV (2003) Fossil fuels – application of thermal analysis techniques. In: Brown ME, Gallagher PK (Hrsg) Handbook of thermal analysis and calorimetry. Elsevier, Amsterdam, S 371–395

    Google Scholar 

  81. Konermann L, Ahadi E, Rodriguez AD, Vahidi S (2013) Unraveling the mechanism of electrospray ionization. Anal Chem 85:2–9

    Article  Google Scholar 

  82. Köpsel R, Kuchling T, Klose E (1987) Influence of the coal characteristics on the liquefaction results. Freiberger Forschungshefte A 749:75–80

    Google Scholar 

  83. Kröger C, Brücker R (1961) Über die physikalischen und chemischen Eigenschaften der Steinkohlegefügebestandteile. XV. Hochvakuumpyrolyse und Kohlekonstitution. Brennstoffchemie 42:305–336

    Google Scholar 

  84. Kröger C, Pohl A (1957) Über die physikalischen und chemischen Eigenschaften der Steinkohlegefügebestandteile. V. Die calorischen Effekte bei der thermischen Zersetzung. Brennstoffchemie 38:179–183

    Google Scholar 

  85. Krzack S (1997) Rohstoffliche und verfahrenstechnische Einflussfaktoren für die Aktivkoksherstellung aus Braunkohle. Dissertation, Freiberg

    Google Scholar 

  86. Krzack S, Heschel W, Mühlhausen C (2009) On heat and mass balancing of brown coal pyrolysis under conditions of partial oxidation. In: International Conference on Coal Science & Technology, 26th–29th October 2009, Cape Town, South Africa

    Google Scholar 

  87. Kurtz R (1978) Teil 5. Schwelung und Verkokung von Braunkohle Rohstoff Kohle. Verlag Chemie, Weinheim,S 205–219

    Google Scholar 

  88. Li C, Zhao J, Fang Y, Wang Y (2009) Pressurized fast-pyrolysis of typical chinese coals with different ranks. Energy Fuel 23:5099–5105

    Article  Google Scholar 

  89. Luther H, Abel O (1966) Zur Differential-Thermoanalyse von Steinkohlen I. Brennstoffchemie 47:258–264

    Google Scholar 

  90. Mabande GTP, Ghosh S, Lai Z, Schwieger W, Tsapatsis M (2005) Preparation of b-oriented MFI films on porous stainless steel substrates. Ind Eng Chem Res 44:9086–9095

    Article  Google Scholar 

  91. MacPhee J, Charland J, Giroux L (2006) Application of TG–FTIR to the determination of organic oxygen and its speciation in the Argonne premium coal samples. Fuel Process Technol 87:335–341

    Article  Google Scholar 

  92. Maffei T (2013) Kinetic model of coal combustion. Dissertation, Polytechnikum Mailand

    Google Scholar 

  93. Maffei T, Khatami R, Pierucci S, Faravelli T, Ranzi E, Levendis YA (2013) Experimental and modeling study of single coal particle combustion in O2/N2 and Oxy-fuel (O2/CO2) atmospheres. Combust Flame 160(11):2559–2572. https://doi.org/10.1016/j.combustflame.2013.06.002

    Article  Google Scholar 

  94. Maffei T, Frassoldati A, Cuoci A, Ranzi E, Faravelli T (2013) Predictive one step kinetic model of coal pyrolysis for CFD applications. Proc Combust Inst 34(2):2401–2410. https://doi.org/10.1016/j.proci.2012.08.006

    Article  Google Scholar 

  95. Mahajan OP, Tomita A, Walker PL (1976) Differential scanning calorimetry studies on coal. 1. Pyrolysis in an inert atmosphere. Fuel 55:63–69

    Article  Google Scholar 

  96. Marsman JH, Wildschut J, Evers P, de Koning S, Heeres HJ (2008) Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry. J Chromatogr A 1188:17–25

    Article  Google Scholar 

  97. Mathews JP, Chaffee AL (2012) The molecular represantations of coal – a review. Fuel 96:1–14

    Article  Google Scholar 

  98. Michel W, Wetzel K, Rummel A, Pelagalli M (1989) Freiberger Forschungshefte A 781:109–114

    Google Scholar 

  99. Miura K (1995) A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data. Energy Fuel 9(2):302–307. https://doi.org/10.1021/ef00050a014

    Article  Google Scholar 

  100. Miura K, Maki T (1998) A simple method for estimating f(E) and k0(E) in the distributed activation energy model. Energy Fuel 12(5):864–869. https://doi.org/10.1021/ef970212q

    Article  Google Scholar 

  101. Moldoveanu SC (1998) Analytical pyrolysis of natural organic polymers. Elsevier, Amsterdam

    Google Scholar 

  102. Moldoveanu SC (2010) Pyrolysis of organic molecules with applications to health and environmental issues. Elsevier, Amsterdam

    Google Scholar 

  103. Mondello L, Tranchida PQ, Dugo P, Dugo G (2008) Comprehensive two-dimensional gas chromatography-mass spectrometry: a review. Mass Spectrom Rev 27:101–124

    Article  Google Scholar 

  104. Nägler T (laufende) Modellierung der katalytischen Spaltung von eozänen Braunkohlen mit Hilfe effektivkinetischer Parameter. Dissertation, Universität Halle-Wittenberg

    Google Scholar 

  105. Netzsch Gerätebau GmbH (2013) Handbuch zur Software Netzsch Proteus Version 6.1.0. Netzsch Gerätebau GmbH, Selb

    Google Scholar 

  106. Nguyen M, Berndt C, Reichel D, Krzack S, Meyer B (2015) Pyrolysis behaviour study of a tar and sulphur-rich brown coal and GC-FID/MS analysis of its tar. J Anal Appl Pyrol 115:194–202. https://doi.org/10.1016/j.jaap.2015.07.014

    Article  Google Scholar 

  107. Niksa S (1986) The distributed-energy chain model for rapid coal devolatilization kinetics. Part II: Transient weight loss correlations. Combust Flame 66(2):111–119. https://doi.org/10.1016/0010-2180(86)90083-0

    Article  Google Scholar 

  108. Niksa S (1988) Rapid coal devolatilization as an equilibrium flash distillation. AIChE J 34(5):790–802. https://doi.org/10.1002/aic.690340509

    Article  Google Scholar 

  109. Niksa S (1991) FLASHCHAIN theory for rapid coal devolatilization kinetics 2: Impact of operating conditions. Energy Fuel 5(5):665–673. https://doi.org/10.1021/ef00029a007

    Article  Google Scholar 

  110. Niksa S (1991) FLASHCHAIN theory for rapid coal devolatilization kinetics 3: Modeling the behavior of various coals. Energy Fuel 5(5):673–683. https://doi.org/10.1021/ef00029a008

    Article  Google Scholar 

  111. Niksa S (1994) FLASHCHAIN theory for rapid coal devolatilization kinetics 4: Predicting ultimate yields from ultimate analyses alone. Energy Fuel 8(3):659–670. https://doi.org/10.1021/ef00045a022

    Article  Google Scholar 

  112. Niksa S (1994) FLASHCHAIN theory for rapid coal devolatilization kinetics 5: Interpreting rates of devolatilization for various coal types and operating conditions. Energy Fuel 8(3):671–679. https://doi.org/10.1021/ef00045a023

    Article  Google Scholar 

  113. Niksa S (1995) FLASHCHAIN theory for rapid coal devolatilization kinetics 6: Predicting the evolution of fuel nitrogen from various coals. Energy Fuel 9(3):467–478. https://doi.org/10.1021/ef00051a011

    Article  Google Scholar 

  114. Niksa S (1996) FLASHCHAIN theory for rapid coal devolatilization kinetics 7: Predicting the release of oxygen species from various coals. Energy Fuel 10(1):173–187. https://doi.org/10.1021/ef950067l

    Article  Google Scholar 

  115. Niksa S (2008) PC coal lab version 4.1 user guide and tutorial. Niksa Energy Associates LLC, Belmont, CA

    Google Scholar 

  116. Niksa S, Kerstein AR (1986) The distributed-energy chain model for rapid coal devolatilization kinetics. Part I: Formulation. Combust Flame 66(2):95 109. https://doi.org/10.1016/0010-2180(86)90082-9

    Article  Google Scholar 

  117. Niksa S, Kerstein AR (1987) On the role of macromolecular configuration in rapid coal devolatilization. Fuel 66(10):1389–1399. https://doi.org/10.1016/0016-2361(87)90186-4

    Article  Google Scholar 

  118. Niksa S, Kerstein AR (1991) FLASHCHAIN theory for rapid coal devolatilization kinetics 1: Formulation. Energy Fuel 5(5):647–665. https://doi.org/10.1021/ef00029a006

    Article  Google Scholar 

  119. Niksa S, Liu G-S, Hurt RH (2003) Coal conversion submodels for design applications at elevated pressures. Part I: Devolatilization and char oxidation. Prog Energ Combust 29(5):425–477. https://doi.org/10.1016/s0360-1285(03)00033-9

    Article  Google Scholar 

  120. Nowak S (1987) Ein neuer Weg zur Gewinnung von Kohlenwasserstoffen auf Basis carbochemischer Rohstoffe. Freiberger Forschungshefte A 763:116

    Google Scholar 

  121. Nowak S (laufende) Einfluss von ZSM-5 Zeolithkatalysatoren und deren Formgebung auf die Spaltung von Braunkohle. Dissertation, Universität Erlangen-Nürnberg

    Google Scholar 

  122. Ong RCY, Marriott PJ (2002) A review of basic concepts in comprehensive two-dimensional gas chromatography. J Chromatogr Sci 40: 276–291

    Article  Google Scholar 

  123. Poroda S (2004) The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis. Fuel 83:1071–1078

    Article  Google Scholar 

  124. Poutsma ML (2000) Fundamental reactions of free radicals relevant to pyrolysis reactions. J Anal Appl Pyrol 54:5–35

    Article  Google Scholar 

  125. Pugmire RJ (2012) Coal structure from solid-state NMR. In: Harris RK (Hrsg) Encyclopedia of NMR. 2, Coa – Dis. Wiley, Chichester, S 605–614

    Google Scholar 

  126. Peppel T, Paul B, Kraehnert R, Enke D, Luecke B, Wohlrab S (2012) Shape-preserving transformation of monolithic porous glass into MFI-type zeolite. Microp Mesop Mat 158:180–186

    Article  Google Scholar 

  127. Perone CS (2009) Pyevolve: A python open-source framework for genetic algorithms. SIGEVOlution 4(1):12–20. https://doi.org/10.1145/1656395.1656397

    Article  Google Scholar 

  128. Pitt GJ (1962) The kinetics of the evolution of volatile products from coal. Fuel 41:267–274

    Google Scholar 

  129. Ramos L (2009) Comprehensive two dimensional gas chromatography. Wilson & Wilson’s Comprehensive Analytical Chemistry, Bd 55, 1. Aufl. Elsevier, Amsterdam and London

    Google Scholar 

  130. Rathsack P, Otto M (2014) Classification of chemical compound classes in slow pyrolysis liquids from brown coal using comprehensive gas-chromatography mass-spectrometry. Fuel 116:841–849

    Article  Google Scholar 

  131. Rathsack P, Kroll MM, Otto M (2014) Analysis of high molecular compounds in pyrolysis liquids from a german brown coal by FT-ICR-MS. Fuel 107:461–468

    Article  Google Scholar 

  132. Rathsack P, Kroll M, Rieger A, Haseneder R, Gerlach D, Repke J-U et al (2014) Analysis of high molecular weight compounds in pyrolysis liquids from scrap tires using Fourier transform ion cyclotron resonance mass spectrometry. J Anal Appl Pyrolysis 107:142–149

    Article  Google Scholar 

  133. Rathsack P, Rieger A, Haseneder R, Gerlach D, Repke J-U, Otto M (2014) Analysis of pyrolysis liquids from scrap tires using comprehensive gas chromatography mass spectrometry and unsupervised learning. J Anal Appl Pyrolysis 109:234–243

    Article  Google Scholar 

  134. Rathsack P, Reichel D, Krzack S, Otto M (2014) Komprehensive Gaschromatographie-Massenspektrometrie von Alkylbenzolen in Pyrolyseölen aus Biomasse und Kohle. Chem Ing Tech 86:1779–1789

    Article  Google Scholar 

  135. Rauscher M, Schwab A, Schwieger W (2010) Bindemittelfreie ZSM‐5‐Formkörper auf Basis von porösen Gläsern durch In‐situ‐Kristallisation: Herstellung, Eigenschaften und katalytische Testung. Chem Ing Tech 82(6):911–919

    Article  Google Scholar 

  136. Rauscher M, Selvam T, Schwieger W, Freude D (2004) Hydrothermal transformation of porous glass granules into ZSM-5 granules. Microp Mesop Mat 75(3):195–202

    Article  Google Scholar 

  137. Reichel D (2017) Rohstoffliche und verfahrenstechnische Einflussfaktoren der Pyrolyse biogener Rohstoffe. Dissertation, TU Bergakademie Freiberg, Freiberg

    Google Scholar 

  138. Reichel D, Klinger M, Krzack S, Meyer B (2011) Vergleichende Untersuchungen zur Pyrolyse von Biomasse und Braunkohle – Stoffbilanzen und Wärmebedarf in Korrelation mit Rohstoffeigenschaften. Erdöl Erdgas Kohle 127:78–83

    Google Scholar 

  139. Reichel D, Klinger M, Krzack S, Meyer B (2013) Effect of ash components on devolatilization behavior of coal in comparison with biomass – product yields, composition, and heating values. Fuel 114:64–70

    Article  Google Scholar 

  140. Rosenvold RJ, Dubow JB, Rajeshwar K (1982) Thermal analyses of Ohio bituminous coals. Thermochimica Acta 53:321–332

    Article  Google Scholar 

  141. Rudolph H (2001) Grundlagen der chemischen Technologie. Wiley-VCH, Weinheim

    Google Scholar 

  142. Safronov D, Kestel M, Nikrityuk PA, Meyer B (2014) Particle resolved simulations of carbon oxidation in a laminar flow. Can J Chem Eng 92(10):1669–1686. https://doi.org/10.1002/cjce.22017

    Article  Google Scholar 

  143. Sakurada S, Tagaya N, Maeshima T, Isoda T (1988) CA 123568

    Google Scholar 

  144. Sathe C, Pang Y, Li C-Z (1999) Effects of heating rate and ion-exchangeable cations on the pyrolysis yields from a victorian brown coal. Energy Fuel 13:748–755

    Article  Google Scholar 

  145. Schafer H (1979) Pyrolysis of brown coals. 1. Decomposition of acid groups in coals containing carboxyl groups in the acid and cation forms. Fuel 58:687

    Article  Google Scholar 

  146. Schafer H (1979) Pyrolysis of brown coals. 2. Decomposition of acidic groups on heating in the range 100–900 °C. Fuel 58:673–679

    Google Scholar 

  147. Scheffler F, Schwieger W, Freude D, Liu H, Heyer W, Janowski F (2002) Transformation of porous glass beads into MFI-type containing beads. Microp Mesop Mat 55:181–191

    Article  Google Scholar 

  148. Schirmer J (2004) Katalytisches Recycling von polyolefinischen Kunststoffen. Dissertation, Universität Erlangen-Nürnberg

    Google Scholar 

  149. Schmalfeld J (2008) Kapitel 3.3.1 Lurgi-Ruhrgas-Verfahren. In: Schmalfeld, J (Hrsg.) Die Veredlung und Umwandlung von Kohle. DGMK, Hamburg, S. 157–173

    Google Scholar 

  150. Schwieger W, Rauscher M, Scheffler F, Janowski F, D. Freude (1999) Verfahren zur Herstellung von biporösen, kristalline silikatische Phasen enthaltenden, Formkörpern aus porösem Glas. Patent DE 19962374

    Google Scholar 

  151. Seddon D (2012) The impact of oil price on ethylene price. Duncan Seddon & Associates Pty Ltd. http://www.duncanseddon.com/the-impact-of-oil-price-on-ethylene-price/

  152. Seeley JV, Seeley SK (2013) Multidimensional gas chromatography: fundamental advances and new applications. Anal Chem 85: 557–578

    Article  Google Scholar 

  153. Seifert G (1973) Untersuchung des Einflusses von Spülgasen und erhöhtem Druck auf den Entgasungsverlauf von Weichbraunkohlen. In: Freiberger Forschungshefte A530 Verfahrenstechnische Grundlagen der Entgasungstechnik. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, S 109–167

    Google Scholar 

  154. Seitz M, Nowak S, Welscher J, Zimmermann J, Nägler T, Stam-Creutz T, Frank W, Schwieger W (2013) Katalysatorscreening für die katalytische Spaltung von Braunkohle. Chem Ing Tech 4:529–534

    Article  Google Scholar 

  155. Seitz M, Nägler T, Welscher J, Nowak S, Zimmermann J, Hahn T, Schwieger W (2014) Catalytic Cracking of Lignites. Erdöl Erdgas Kohle (2):80–88

    Google Scholar 

  156. Seitz M, Heschel W, Nägler T, Nowak S, Zimmermann J, Stam-Creutz T, Frank W, Appelt J, Bieling S, Meyer B (2014) Influence of catalysts on the pyrolysis of lignites. Fuel 134: 669–676

    Article  Google Scholar 

  157. Sfetsas T, Michailof C, Lappas A, Li Q, Kneale B (2011) Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J Chromatogr A 1218:3317–3325

    Article  Google Scholar 

  158. Smith KL, Smoot LD, Fletcher TH, Pugmire RJ (1994) The structure and reaction processes of coal. Plenum Press, New York

    Book  Google Scholar 

  159. Solomon PR (1985) Chemistry of coal conversion. Plenum Press, New York

    Google Scholar 

  160. Solomon PR, Fletcher TH, Pugmire RJ (1993) Progress in coal pyrolysis. Fuel 72:587–597

    Article  Google Scholar 

  161. Solomon PR, Hamblen DG, Carangelo RM, Serio MA, Deshpande GV (1988) General model of coal devolatilization. Energy Fuel 2(4):405–422. https://doi.org/10.1021/ef00010a006

    Article  Google Scholar 

  162. Solomon PR, Serio MA, Carangelo RM, Bassilakis R, Gravel D, Baillargeon M, Baudais F, Vail G (1990) Analysis of the Argonne premium coal samples by thermogravimetric Fourier transform infrared spectroscopy. Energy Fuel 4(3):319–333. https://doi.org/10.1021/ef00021a017

    Article  Google Scholar 

  163. Solomon PR, Serio MA, Despande GV, Kroo E (1990) Cross-linking reactions during coal conversion. Energy Fuels 4:42–54

    Article  Google Scholar 

  164. Solomon PR, Serio MA, Suuberg EM (1992) Coal pyrolysis: experiments, kinetic rates and mechanisms. Prog Energy Combust 18(2):133–220. https://doi.org/10.1016/0360-1285(92)90021-R

    Article  Google Scholar 

  165. Solum MS, Pugmire RJ, Grant DM (1989) 13C solid-state NMR of Argonne premium coals. Energy Fuel 3(2):187–193

    Article  Google Scholar 

  166. Sommariva S, Maffei T, Migliavacca G, Faravelli T, Ranzi E (2010) A predictive multi-step kinetic model of coal devolatilization. Fuel 89(2):318–328. https://doi.org/10.1016/j.fuel.2009.07.023

    Article  Google Scholar 

  167. Strache H, Grau H (1921) Bestimmung der Entgasungswärmen von Kohlen im Kalorimeter. Brennstoffchemie 2:97–112

    Google Scholar 

  168. Sun CL, Xiong YQ, Liu QX, Zhang MY (1997) Thermogravimetric study of the pyrolysis of two Chinese coals under pressure. Fuel 76:639–644

    Article  Google Scholar 

  169. Sun Q, Li W, Chen H, Li B, Sun Q (2006) Devolatilization characteristics of Shenmu coal macerals and kinetic analysis. Energy Sourc Part A 28(9):865–874. https://doi.org/10.1080/009083190910361

    Article  Google Scholar 

  170. Suuberg EM, Peters WA, Howard JB (1978) Product composition and kinetics of lignite pyrolysis. Ind Eng Chem Proc Des Dev 17:37–46

    Article  Google Scholar 

  171. Suuberg EM, Unger PE, Lilly WD (1985) Experimental study on mass transfer from pyrolysing coal particles. Fuel 64(7):956–962. https://doi.org/10.1016/0016-2361(85)90151-6

    Article  Google Scholar 

  172. Toufar W (1973) Die Reaktionswärme des Entgasungsprozesses von Braunkohlen und quasi reinen Mikrolithotypen. In: Verfahrenstechnische Grundlagen der Entgasungstechnik, Freiberger Forschungshefte A 530. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, S 5–108

    Google Scholar 

  173. Tremel A, Haselsteiner T, Kunze C, Spliethoff H (2012) Experimental investigation of high temperature and high pressure coal gasification. Appl Energ 92:279–285

    Article  Google Scholar 

  174. Tromp P, Kapteijn F, Moulijn JA (1987) Characterization of coal pyrolysis by means of differential scanning calorimetry. 1. Quantitative heat effects in an inert atmosphere. Fuel Process Technol 15:45–57

    Article  Google Scholar 

  175. Turns SR (2000) An introduction to combustion: concepts and application. McGraw-Hill, Singapore

    Google Scholar 

  176. Unger PE, Suuberg EM (1981) Modeling the devolatilization behavior of a softening bituminous coal. Symp Int Combust 18(1):1203–1211. https://doi.org/10.1016/S0082-0784(81)80124-5

    Article  Google Scholar 

  177. van Heek KH, Hodek W (1994) Structure and pyrolysis behaviour of different coals and relevant model substances. Fuel 73:886–896

    Article  Google Scholar 

  178. van Heek KH, Jüntgen H, Peters W (1967) Nicht-isotherme Reaktionskinetik der Kohlepyrolyse I. Theoretische und experimentelle Grundlagen, Voruntersuchungen an Carbonsäuren. Brennstoffchemie 48:35–42

    Google Scholar 

  179. Vascellari M, Xu H, Hasse C (2013) Flamelet modeling of coal particle ignition. Proc Combust Inst 34(2):2445–2452. https://doi.org/10.1016/j.proci.2012.06.152

    Article  Google Scholar 

  180. Vascellari M, Arora R, Pollack M, Hasse C (2013) Simulation of entrained flow gasification with advanced coal conversion submodels. Part 1: Pyrolysis. Fuel 113:654–669. https://doi.org/10.1016/j.fuel.2013.06.014

    Article  Google Scholar 

  181. Vogt L, Gröger T, Zimmermann R (2007) Automated compound classification for ambient aerosol sample separations using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J Chromatogr A 1150:2–12

    Article  Google Scholar 

  182. Wanzl W (1988) Chemical reactions in thermal decomposition of coal. Fuel Process Technol 20:317–336

    Article  Google Scholar 

  183. Wanzl W (2008) Grundlagen der Verkokung und Pyrolyse. In: Schmalfeld J (Hrsg) Die Veredlung und Umwandlung von Kohle. DGMK, Hamburg, S 9–12

    Google Scholar 

  184. Wanzl W (2008) Formkokserzeugung. In: Schmalfeld J (Hrsg) Die Veredlung und Umwandlung von Kohle – Technologien und Projekte 1970 bis 2000 in Deutschland. DGMK, Hamburg, S 51–104

    Google Scholar 

  185. Wanzl W (2008) Grundlagen der Verkokung und der Pyrolyse. In: Schmalfeld J (Hrsg) Die Veredlung und Umwandlung von Kohle – Technologien und Projekte 1970 bis 2000 in Deutschland. DGMK, Hamburg, S 9–12

    Google Scholar 

  186. Welthagen W, Schnellekreis J, Zimmermann R (2003) Search criteria and rules for comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry analysis of airborne particulate matter. J Chromatogr A1019: 233–249

    Article  Google Scholar 

  187. Wolfersdorf C (2011) Literaturrecherche zu kinetischen Modellen und Strukturmodellen für die Beschreibung der Pyrolyse von Biomassen und Kohlen. Studienarbeit, TU Bergakademie Freiberg

    Google Scholar 

  188. Wolfinger MG, Rath J, Krammer G, Barontine F, Cozzani V (2001) Influence of the emissiity of sample on differential scanning calorimetry measurements. Thermochimica Acta 372:11–18

    Article  Google Scholar 

  189. Wu Z, Rodgers RP, Marshall AG (2004) Compositional determination of acidic species in Illinois No. 6 coal extracts by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 76:2511–2516

    Google Scholar 

  190. Wuntschhoff T (1975) Anwendung der Differential-Thermoanalyse bei der Kohlenpyrolyse unter verschiedenen Drücken und Spülgasen und bei der Messung der Reaktionswärme. In: Freiberger Forschungshefte A 548 Grundstoff-Verfahrenstechnik Brennstofftechnik. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, S 73–131

    Google Scholar 

  191. Xu R, Pang W, Yu J, Huo Q, Chen J (2007) Chemistry of zeolites and related porous materials–synthesis and structure. John Wiley & Sons (Asia) Pte Ltd, Singapore

    Book  Google Scholar 

  192. Xu W-C, Tomita A (1989) The effects of temperature and residence time on the secondary reactions of volatiles from coal pyrolysis. Fuel Process Technol 21:25–37

    Article  Google Scholar 

  193. Yan L, Bai Y, Zhao R, Li F, Xie K (2015) Correlation between coal structure and release of the two organic compounds during pyrolysis. Fuel 145:12–17

    Article  Google Scholar 

  194. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels 20:388–393

    Article  Google Scholar 

  195. Yu J, Lucas JA, Wall TF (2007) Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: a review. Prog Energ Combust 33(2):135–170. https://doi.org/10.1016/j.pecs.2006.07.003

    Article  Google Scholar 

  196. Zampieri A (2007) Development of MFI-type zeolite coatings on SiSiC ceramic monoliths for catalytic applications. Dissertation, Technische Fakultät Universität Erlangen Nürnberg

    Google Scholar 

  197. Zampieri A, Dubbe A, Schwieger, W, Avhale A, Moos R (2008) ZSM-5 zeolite films on Si substrates grown by in situ seeding and secondary crystal growth and application in an electrochemical hydrocarbon gas sensor. Microp Mesop Mat 111:530–535

    Article  Google Scholar 

  198. Zimmermann J (laufende) Entwicklung eines kontinuierlichen Reaktorsystems zur katalytischen Spaltung von Braunkohle auf Basis labortechnischer Untersuchungen. Dissertation, Universität Halle-Wittenberg. https://doi.org/10.1021/ef00014a012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Klinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klinger, D. et al. (2018). Pyrolyse. In: Krzack, S., Gutte, H., Meyer, B. (eds) Stoffliche Nutzung von Braunkohle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46251-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46251-5_19

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46250-8

  • Online ISBN: 978-3-662-46251-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics