Advertisement

Classification of Confocal Laser Endomicroscopic Images of the Oral Cavity to Distinguish Pathological from Healthy Tissue

  • Christian Jaremenko
  • Andreas Maier
  • Stefan Steidl
  • Joachim Hornegger
  • Nicolai Oetter
  • Christian Knipfer
  • Florian Stelzle
  • Helmut Neumann
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Confocal laser endomicroscopy is a recently introduced advanced imaging technique which enables microscopic imaging of the mucosa in-vivo. This technique has already been applied successfully during diagnosis of gastrointestinal diseases. Whereas for this purpose several computer aided diagnosis approaches exist, we present a classification system that is able to differentiate between healthy and pathological images of the oral cavity. Varying textural features of small rectangular regions are evaluated using random forests and support vector machines. Preliminary results reach up to 99.2% classification rate. This indicates that an automatic classification system to differentiate between healthy and pathological mucosa of the oral cavity is feasible.

Keywords

Support Vector Machine Oral Cavity Random Forest Local Binary Pattern Average Recall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mualla F, Sch¨oll S, Bohr C, et al. Epithelial cell detection in endomicroscopy images of the vocal folds. Springer Proc Phy. 2014;154:201–5.CrossRefGoogle Scholar
  2. 2.
    Neumann H, Vieth M, Langner C, et al. Cancer risk in IBD: how to diagnose and how to manage DALM and ALM. World J Gastroenterol. 2011;17(27):3184–91.Google Scholar
  3. 3.
    Volgger V, Conderman C, Betz CS. Confocal laser endomicroscopy in head and neck cancer: steps forward? Curr Opin Otolaryngol Head Neck Surg. 2013;21(2):164–70.CrossRefGoogle Scholar
  4. 4.
    Couceiro S, Barreto P, Freire P, et al. Machine learning in medical imaging: description and classification of confocal endomicroscopic images for the automatic diagnosis of inflammatory bowel disease. Lect Notes Comput Sci. 2012;7588:144–51.CrossRefGoogle Scholar
  5. 5.
    Mualla F, Sch¨oll S, Sommerfeldt B, et al. Automatic cell detection in bright-field microscope images using SIFT, random forests, and hierarchical clustering. IEEE Trans Med Imaging. 2013;32(12):2274–86.CrossRefGoogle Scholar
  6. 6.
    Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3(6):610–21.CrossRefGoogle Scholar
  7. 7.
    Baraldi A, Parmiggiani F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans Geosci Remote Sens. 1995;33(2):293–304.CrossRefGoogle Scholar
  8. 8.
    Pietikainen M, Hadid A, Zhao G, et al. Computer Vision Using Local Binary Patterns. vol. 40 of Computational Imaging and Vision. Springer, London; 2011.CrossRefGoogle Scholar
  9. 9.
    Platt J. Sequential minimal optimization: a fast algorithm for training support vector machines. Microsoft Research; 1998.Google Scholar
  10. 10.
    Breiman L. Random forests. Mach Learn. 2001; p. 5–32.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christian Jaremenko
    • 1
  • Andreas Maier
    • 1
    • 2
  • Stefan Steidl
    • 1
  • Joachim Hornegger
    • 1
  • Nicolai Oetter
    • 3
  • Christian Knipfer
    • 3
  • Florian Stelzle
    • 3
  • Helmut Neumann
    • 4
  1. 1.Pattern Recognition Lab, Department of Computer Science, FAU Erlangen-NürnbergErlangenDeutschland
  2. 2.SAOT Graduate School in Advanced Optical TechnologiesErlangenDeutschland
  3. 3.Department of Oral and Maxillofacial SurgeryUniversity Hospital ErlangenErlangenDeutschland
  4. 4.Department of Medicine IUniversity Hospital ErlangenErlangenDeutschland

Personalised recommendations