Advertisement

Band-Pass Filter Design by Segmentation in Frequency Domain for Detection of Epithelial Cells in Endomicroscope Images

  • Bastian Bier
  • Firas Mualla
  • Stefan Steidl
  • Christopher Bohr
  • Helmut Neumann
  • Andreas Maier
  • Joachim Hornegger
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Voice hoarseness can have various reasons, one of them is a change of the vocal fold mucus. This change can be examined with micro endoscopes. Cell detection in these images is a difficult task, due to bad image quality, caused by noise and illumination variations. In previous works, it was observed that the repetitive pattern of the cell walls cause an elliptical shape in the Fourier domain [1, 2]. A manual segmentation and back transformation of this shape results in filtered images, where the cell detection is much easier [3]. The goal of this work is to automatically segment the elliptical shape in Fourier domain. Two different approaches are developed to get a suitable band-pass filter: a thresholding and an active contour method. After the band-pass filter is applied, the achieved results are superior to the manual segmentation case.

Keywords

Manual Segmentation Cell Detection Elliptical Shape Fourier Domain Thresholding Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruggeri A, Grisan E, Jaroszewski J. A new system for the automatic estimation of endothelial cell density in donor corneas. Br J Ophthalmol. 2005; p. 306–11.Google Scholar
  2. 2.
    Foraccia M, Ruggeri A. Estimating dell density in corneal endothelium by means of fourier analysis. Proc Second Jt EMBS/BMES. 2002; p. 1097–8.Google Scholar
  3. 3.
    Mualla F, Sch¨oll S, Bohr C, et al. Epithelial cell detection in endomicroscopy images of the vocal folds. Proc Int Multidisciplin Microsc Congr. 2013; p. 1097–8.Google Scholar
  4. 4.
    Klemuk SA, Riede T, Walsh EJ, et al. Adapted to roar: functional morphology of tiger and lion vocal folds. PLoS One. 2011;6(11):e27029.CrossRefGoogle Scholar
  5. 5.
    Long X, Cleveland W, Yao Y. Automatic detection of unstained viable cells in bright field images using a support vector machine with an improved training procedure. Comput Biol Med. 2006;36(4):339–62.CrossRefGoogle Scholar
  6. 6.
    Mualla F, Sch¨oll S, Sommerfeldt B, et al. Automatic cell detection in bright-field microscope images using SIFT, random forests, and hierarchical clustering. IEEE Trans Med Imaging. 2013;32(12):2274–86.CrossRefGoogle Scholar
  7. 7.
    Mualla F, Sch¨oll S, Sommerfeldt B, et al. Unsupervised unstained cell detection by SIFT keypoint clustering and self-labeling algorithm. Lect Notes Computer Sci. 2014;8675:377–84.CrossRefGoogle Scholar
  8. 8.
    Pan J, Kanade T, Chen M. Heterogeneous conditional random field: realizing joint detection and segmentation of cell regions in microscopic images. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2010; p. 2940–7.Google Scholar
  9. 9.
    Johnson HJ, McCormick M, Ib´a˜nez L. The ITK Software Guide. 3rd ed.; 2013. 10. Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Computer Vis. 1997;22(1):61–79.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bastian Bier
    • 1
  • Firas Mualla
    • 1
  • Stefan Steidl
    • 1
  • Christopher Bohr
    • 2
  • Helmut Neumann
    • 3
  • Andreas Maier
    • 1
  • Joachim Hornegger
    • 1
  1. 1.Pattern Recognition LabErlangen-NürnbergDeutschland
  2. 2.Department of OtorhinolaryngologyErlangen-NürnbergDeutschland
  3. 3.Department of Medicine I Friedrich-Alexander-UniversitätErlangen-NürnbergDeutschland

Personalised recommendations