Advertisement

Dynamic Programming for the Segmentation of Bone Marrow Cells

  • Sebastian KrappeEmail author
  • Christian Münzenmayer
  • Amrei Evert
  • Can Fahrettin Koyuncu
  • Enis Cetin
  • Torsten Haferlach
  • Thomas Wittenberg
  • Christian Held
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

For the diagnosis of leukemia the morphological analysis of bone marrow is essential. This procedure is time consuming, partially subjective, error-prone and cumbersome. Moreover, repeated examinations may lead to intra- and inter-observer variances. Therefore, an automation of the bone marrow analysis is pursued. The automatic classification of bone marrow cells is highly dependent on the preceding segmentation of the nucleus and plasma parts of the cell. In this contribution we propose a dynamic programming approach for the segmentation of already localized bone marrow cells and evaluate the method with 1000 manually segmented cells. With this approach the segmentation quality for whole cells is 0.93 and 0.85 for the corresponding nucleus parts.

Keywords

Bone Marrow Cell Foreground Pixel Dynamic Programming Approach Segmentation Quality Bone Marrow Smear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zerfass T, Haßlmeyer E, Schlarb T, et al. Segmentation of leukocyte cells in bone marrow smears. Comput Base Med Syst. 2010; p. 267–72.Google Scholar
  2. 2.
    Nilsson B, Heyden A. Model-based segmentation of leukocytes clusters. Proc ICPR. 2002;1:727–30.Google Scholar
  3. 3.
    Nilsson B, Heyden A. Segmentation of complex cell clusters in microscopic images: application to bone marrow samples. Cytometry A. 2005;66(1):24–31.CrossRefGoogle Scholar
  4. 4.
    Reta C, Altamirano L, Gonzalez J, et al. Segmentation of bone marrow cell images for morphological classification of acute leukemia. Fla Artiff Intell Res Soc Conf. 2010.Google Scholar
  5. 5.
    Hengen H, Spoor SL, Pandit MC. Analysis of blood and bone marrow smears using digital image processing techniques. Proc SPIE. 2002;4684:624–35.CrossRefGoogle Scholar
  6. 6.
    Bergen T, Steckhan D, Wittenberg T, et al. Segmentation of leukocytes and erythrocytes in blood smear images. Proc EMBS. 2008; p. 3075–8.Google Scholar
  7. 7.
    Nandy K, Gudla PR, Lockett SJ. Automatic segmentation of cell nuclei in 2D using dynamic programming. Proc Second Workshop Microsc Image Anal Appl Bio. 2007.Google Scholar
  8. 8.
    Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2274–82.CrossRefGoogle Scholar
  9. 9.
    Krappe S, Macijewski K, Eismann E, et al. Lokalisierung von Knochenmarkzellen f¨ur die automatisierte Morphologische Analyse von Knochenmarkpr¨aparaten. Proc BVM. 2014; p. 403–8.Google Scholar
  10. 10.
    Elter M, Held C, Wittenberg T. Contour tracing for segmentation of mammographic masses. Phys Med Bio. 2010;55(18):5299.CrossRefGoogle Scholar
  11. 11.
    Zenzo SD. A note on the gradient of a multi-image. Computer Vis Graph Image Process. 1986;33(1):116–25.CrossRefzbMATHGoogle Scholar
  12. 12.
    Cormen T, Leiserson C, Rivest R, et al. Introduction to Algorithms. 2nd ed. Cambridge, MA, USA: MIT Press; 2001.zbMATHGoogle Scholar
  13. 13.
    Mitchell M. An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press; 1998.zbMATHGoogle Scholar
  14. 14.
    Tanimoto T. An Elementary Mathematical Theory of Classification and Prediction. International Business Machines Corporation; 1958.Google Scholar
  15. 15.
    Krappe S, Efstathiou E, Haferlach T, et al. Training und Qualit¨atssicherung f¨ur die morphologische Analyse von Knochenmarkpr¨aparaten. Proc GMDS. 2013.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Krappe
    • 1
    Email author
  • Christian Münzenmayer
    • 1
  • Amrei Evert
    • 1
  • Can Fahrettin Koyuncu
    • 2
  • Enis Cetin
    • 2
  • Torsten Haferlach
    • 3
  • Thomas Wittenberg
    • 1
  • Christian Held
    • 1
  1. 1.Fraunhofer Institute for Integrated Circuits IISErlangenDeutschland
  2. 2.Bilkent UniversityAnkaraDeutschland
  3. 3.MLL Munich Leukemia LaboratoryMunichDeutschland

Personalised recommendations