Image Registration with Sliding Motion Constraints for 4D CT Motion Correction

  • Alexander DerksenEmail author
  • Stefan Heldmann
  • Thomas Polzin
  • Benjamin Berkels
Conference paper
Part of the Informatik aktuell book series (INFORMAT)


A common assumption in medical image registration is that the estimation of a globally continuous deformation field is plausible in reality. However, a sliding behavior of adjacent organ boundaries (e.g. lung and ribcage) cannot be described in a plausible way by a continuous deformation field. In this paper, we address this issue with a novel registration framework that explicitly models sliding of interfaces and can preserve discontinuities in the deformation field along predefined organ boundaries. Incorporated methods involve constrained nonlinear registration and a finite element discretization on unstructured tetrahedral meshes. Evaluation is based on the freely available DIR-Lab datasets.


Image Registration Template Image Target Registration Error Deformable Image Registration Registration Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murphy K, van Ginneken B, Reinhardt JM, et al. Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans Med Imaging. 2011;30:1901–20.CrossRefGoogle Scholar
  2. 2.
    Galb´an CJ, Han MK, Boes JL, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18:1711–5.CrossRefGoogle Scholar
  3. 3.
    R¨uhaak J, Heldmann S, Kipshagen T, et al. Highly accurate fast lung CT registration. Proc SPIE. 2013;8669:86690Y–1–9.Google Scholar
  4. 4.
    Werner R, Ehrhardt J, Schmidt R, et al. Patient-specific finite element modeling of respiratory lung motion using 4D CT image data. Med Phys. 2009;36:1500–11.CrossRefGoogle Scholar
  5. 5.
    Schmidt-Richberg A, Werner R, Handels H, et al. Estimation of slipping organ motion by registration with direction-dependent regularization. Med Image Anal. 2012;16:150–9.CrossRefGoogle Scholar
  6. 6.
    Pace D, Aylward S, Niethammer M. A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Trans Med Imaging. 2013;32:2114–26.CrossRefGoogle Scholar
  7. 7.
    Han L, Hawkes D, Barratt D. A hybrid biomechanical model-based image registration method for sliding objects. Proc SPIE. 2014;9034:90340G–1–6.Google Scholar
  8. 8.
    Modersitzki J. FAIR: Flexible Algorithms for Image Registration. SIAM; 2009.Google Scholar
  9. 9.
    Castillo R, Castillo E, Guerra R, et al. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol. 2009;54:1849–70.CrossRefGoogle Scholar
  10. 10.
    Lassen B, Kuhnigk JM, Schmidt M, et al. Lung and lung lobe segmentation methods at fraunhofer MEVIS. Proc Int Workshop Pulmon Image Anal. 2011; p. 185–99.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexander Derksen
    • 1
    Email author
  • Stefan Heldmann
    • 1
  • Thomas Polzin
    • 2
  • Benjamin Berkels
    • 3
  1. 1.Fraunhofer MEVIS Project Group Image RegistrationLübeckDeutschland
  2. 2.Institute of Mathematics and Image ComputingUniversity of LübeckLübeckDeutschland
  3. 3.Aachen Institute for Advanced Study in Computational Engineering ScienceRWTH Aachen UniversityAachenDeutschland

Personalised recommendations