Advertisement

Data-Driven Spine Detection for Multi-Sequence MRI

Conference paper
  • 2.3k Downloads
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Epidemiology studies on vertebra’s shape and appearance require big databases of medical images and image processing methods, that are robust against deformation and noise. This work presents a solution of the first step: the vertebrae detection. We propose a method that automatically detects the central spinal curve with 3D data-driven methods in multi-sequence magnetic resonance images (MRl). Additionally, we use simple edge operations for vertebra border detection that can be used for a statistical evaluation with help of some fast user interaction. Our automatic vertebrae detection algorithm fits a polynomial curve through the spinal canal, that afterwards is shifted towards the vertebra centers. An edge operator gives a first approximation of the vertebra borders, that can be evaluated and corrected by some user interaction within 12 seconds. We show, that our algorithm automatically detects more than 90% of all spines correctly, and present a preliminary analysis of vertebrae sizes.

Keywords

Vertebral Body Intervertebral Disc Spinal Canal Statistical Shape Model Spine Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V¨olzke H, Alte D, Schmidt CO, et al. Cohort profile: the study of health in Pomerania. Int J Epidemiol. 2011;40(2):294–307.CrossRefGoogle Scholar
  2. 2.
    T¨onnies KD, Rak M, Engel K. Deformable part models for object detection in medical images. Biomed Eng Online. 2014;13:S1.CrossRefGoogle Scholar
  3. 3.
    Kadoury S, Labelle H, Paragios N. Spine segmentation in medical images using manifold embeddings and higher-order MRFs. IEEE Trans Med Imaging. 2013;32(7):1227–38.CrossRefGoogle Scholar
  4. 4.
    Neubert A, Fripp J, Engstrom C, et al. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Phys Med Biol. 2012;57(24):8357–76.CrossRefGoogle Scholar
  5. 5.
    Dong X, Lu H, Sakurai Y, et al. Automated intervertebral disc detection from low resolution, sparse MRI images for the planning of scan geometries. Lect Notes Computer Sci. 2010;6357:10–7.CrossRefGoogle Scholar
  6. 6.
    Pohle-Fr¨ohlich R, Brandt C, Koy T. Segmentierung der lumbalen bandscheiben in MRT-bilddaten. Proc BVM. 2013; p. 63–8.Google Scholar
  7. 7.
    Huang SH, Chu YH, Lai SH, et al. Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Trans Med Imaging. 2009;28(10):1595–605.CrossRefGoogle Scholar
  8. 8.
    Schmidt S, Kappes J, Bergtholdt M, et al. Spine detection and labeling using a parts-based graphical model. Inf Process Med Imaging. 2007;20:122–33.CrossRefGoogle Scholar
  9. 9.
    Stern D, Likar B, Pernus F, et al. Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine. Phys Med Biol. 2010;55(1):247–64.CrossRefGoogle Scholar
  10. 10.
    Vrtovec T, Ourselin S, Gomes L, et al. Automated generation of curved planar reformations from MR images of the spine. Phys Med Biol. 2007;52(10):2865–78.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Otto-von-Guericke-University MagdeburgMagdeburgDeutschland
  2. 2.Computer Vision GroupOtto-von-Guericke-University MagdeburgMagdeburgDeutschland

Personalised recommendations