A Model for Industrial Real-Time Systems

  • Md Tawhid Bin Waez
  • Andrzej Wąsowski
  • Juergen Dingel
  • Karen Rudie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8931)


Introducing automated formal methods for large industrial real-time systems is an important research challenge. We propose timed process automata (TPA) for modeling and analysis of time-critical systems which can be open, hierarchical, and dynamic. The model offers two essential features for large industrial systems: (i) compositional modeling with reusable designs for different contexts, and (ii) an automated state-space reduction technique. Timed process automata model dynamic networks of continuous-time communicating control processes which can activate other processes. We show how to automatically establish safety and reachability properties of TPA by reduction to solving timed games. To mitigate the state-space explosion problem, an automated state-space reduction technique using compositional reasoning and aggressive abstractions is also proposed.


Winning Strategy Hybrid Automaton Main Thread Reusable Design WCET Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Sangiovanni-Vincentelli, A., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of surprise in timed games. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: Timed I/O automata: A complete specification theory for real-time systems. In: HSCC (2010)Google Scholar
  5. 5.
    Waez, M.T.B., Wąsowski, A., Dingel, J., Rudie, K.: Synthesis of a reconfiguration service for mixed-criticality multi-core system: An experience report. In: FACS (to appear, 2014)Google Scholar
  6. 6.
    Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  7. 7.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126 (1994)Google Scholar
  8. 8.
    Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed automata for the development of real-time systems. In: CSR (2013)Google Scholar
  9. 9.
    Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed I/O Automata (2006)Google Scholar
  10. 10.
    Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: REX Workshop (1992)Google Scholar
  11. 11.
    Waez, M.T.B., Wąsowski, A., Dingel, J., Rudie, K.: A model for industrial real-time systems. Technical Report 2014-622, Queen’s University, ON (2014)Google Scholar
  12. 12.
    Brihaye, T., Henzinger, T.A., Prabhu, V.S., Raskin, J.-F.: Minimum-time reachability in timed games. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 825–837. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 838–849. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Cassez, F.: Timed games for computing WCET for pipelined processors with caches. In: ACSD (2011)Google Scholar
  15. 15.
    Gustavsson, A., Ermedahl, A., Lisper, B., Pettersson, P.: Towards WCET analysis of multicore architectures using UPPAAL. In: WCET (2010)Google Scholar
  16. 16.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Fersman, E., Krčál, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decidability and undecidability. Information and Computation (2007)Google Scholar
  18. 18.
    Campana, S., Spalazzi, L., Spegni, F.: Dynamic networks of timed automata for collaborative systems: A network monitoring case study. In: ISCTS (2010)Google Scholar
  19. 19.
    Boudjadar, A., Vaandrager, F., Bodeveix, J.P., Filali, M.: Extending UPPAAL for the modeling and verification of dynamic real-time systems. In: FSE (2013)Google Scholar
  20. 20.
    Göllü, A., Varaiya, P.: A dynamic network of hybrid automata. In: AIS (1994)Google Scholar
  21. 21.
    David, A., Larsen, K.G., Legay, A., Poulsen, D.B.: Statistical model checking of dynamic networks of stochastic hybrid automata. In: AVoCS (2013)Google Scholar
  22. 22.
    Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 103–129. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Barbuti, R., Tesei, L.: Timed automata with urgent transitions. Acta Informatica (2004)Google Scholar
  24. 24.
    Peter, H.-J., Ehlers, R., Mattmüller, R.: Synthia: Verification and synthesis for timed automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 649–655. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Posse, E., Dingel, J.: Theory and implementation of a real-time extension to the π-calculus. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010, Part II. LNCS, vol. 6117, pp. 125–139. Springer, Heidelberg (2010)Google Scholar
  26. 26.
    Barakat, K., Kowalewski, S., Noll, T.: A native approach to modeling timed behavior in the pi-calculus. In: Margaria, T., Qiu, Z., Yang, H. (eds.) TASE (2012)Google Scholar
  27. 27.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Md Tawhid Bin Waez
    • 1
  • Andrzej Wąsowski
    • 2
  • Juergen Dingel
    • 1
  • Karen Rudie
    • 1
  1. 1.Queen’s UniversityCanada
  2. 2.IT University of CopenhagenDenmark

Personalised recommendations