Analysis of Infinite-State Graph Transformation Systems by Cluster Abstraction

  • Peter Backes
  • Jan Reineke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8931)


Analysis of distributed systems with message passing and dynamic process creation is challenging because of the unboundedness of the emerging communication topologies and hence the infinite state space. We model such systems as graph transformation systems and use abstract interpretation to compute a finite overapproximation of the set of reachable graphs. To this end, we propose cluster abstraction, which decomposes graphs into small overlapping clusters of nodes. Using astra, our implementation of cluster abstraction, we are for the first time able to prove several safety properties of the merge protocol. The merge protocol is a coordination mechanism for car platooning where the leader car of one platoon passes its followers to the leader car of another platoon, eventually forming one single merged platoon.


graph transformation abstract interpretation parameterized verification shape analysis distributed message-passing systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Backes, P., Reineke, J.: A graph transformation case study for the topology analysis of dynamic communication systems. In: TTC 2010. CTIT Workshop Proceedings, vol. WP10-03, pp. 107–118. University of Twente, Enschede (2010)Google Scholar
  2. 2.
    Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: Design of platoon maneuver protocols for IVHS. Technical report, Institute of Transportation Studies, UC Berkeley (1991)Google Scholar
  3. 3.
    Backes, P., Reineke, J.: Abstract topology analysis of the join phase of the merge protocol (using astra). In: TTC 2010. CTIT Workshop Proceedings, vol. WP10-03, pp. 127–133. University of Twente, Enschede (2010)Google Scholar
  4. 4.
    Backes, P.: Topology analysis of dynamic communication systems. Diploma thesis, Saarland University (March 2008)Google Scholar
  5. 5.
    Kozyura, V., König, B.: Augur 2—A tool for the analysis of (attributed) graph transformation systems using approximative unfolding techniques (April 2008)Google Scholar
  6. 6.
    Zambon, E.: Abstract graph transformation: Theory and practice. PhD thesis, University of Twente (2013)Google Scholar
  7. 7.
    Baldan, P., König, B.: Approximating the behaviour of graph transformation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 14–29. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    König, B., Kozioura, V.: Augur 2—a new version of a tool for the analysis of graph transformation systems. In: Bruni, R., Varró, D. (eds.) GT-VMT 2006. ENTCS, vol. 2011, pp. 201–210 (2008)Google Scholar
  9. 9.
    Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by partner abstraction. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 249–264. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Rensink, A., Distefano, D.: Abstract graph transformation. In: SVV 2005. ENTCS, vol. 157, pp. 39–59 (May 2006)Google Scholar
  11. 11.
    Boneva, I., Kreiker, J., Kurbán, M., Rensink, A., Zambon, E.: Graph abstraction and abstract graph transformations (amended version). Technical Report TR-CTIT-12-26, University of Twente, Enschede, The Netherlands (October 2012)Google Scholar
  12. 12.
    Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Cherem, S., Rugina, R.: Maintaining doubly-linked list invariants in shape analysis with local reasoning. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 234–250. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Bauer, J., Boneva, I., Rensink, A.: Graph abstraction by daisy patterns. Privately circulated (May 2009)Google Scholar
  15. 15.
    Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification of ad hoc routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread quantification for concurrent shape analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)CrossRefGoogle Scholar
  18. 18.
    Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap decomposition for concurrent shape analysis. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 363–377. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Zufferey, D., Wies, T., Henzinger, T.A.: Ideal abstractions for well-structured transition systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 445–460. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Peter Backes
    • 1
  • Jan Reineke
    • 1
  1. 1.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations