Automatic Synthesis of Piecewise Linear Quadratic Invariants for Programs

  • Assalé Adjé
  • Pierre-Loïc Garoche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8931)


Among the various critical systems that are worth to be formally analyzed, a wide set consists of controllers for dynamical systems. Those programs typically execute an infinite loop in which simple computations update internal states and produce commands to update the system state. Those systems are yet hardly analyzable by available static analysis method, since, even if performing mainly linear computations, the computation of a safe set of reachable states often requires quadratic invariants.

In this paper we consider the general setting of a piecewise affine program; that is a program performing different affine updates on the system depending on some conditions. This typically encompasses linear controllers with saturations or controllers with different behaviors and performances activated on some safety conditions.

Our analysis is inspired by works performed a decade ago by Johansson et al, and Morari et al, in the control community. We adapted their method focused on the analysis of stability in continuous-time or discretetime settings to fit the static analysis paradigm and the computation of invariants, that is over-approximation of reachable sets using piecewise quadratic Lyapunov functions.


formal verification static analysis piecewise affine systems piecewise quadratic lyapunov functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [All09]
    Allamigeon, X.: Static analysis of memory manipulations by abstract interpretation — Algorithmics of tropical polyhedra, and application to abstract interpretation. PhD thesis, École Polytechnique, Palaiseau, France (November 2009)Google Scholar
  2. [BBK+01]
    Blondel, V., Bournez, O., Koiran, P., Papadimitriou, C., Tsitsiklis, J.: Deciding stability and mortality of piecewise affine dynamical systems. Theoretical Computer Science A 1–2(255), 687–696 (2001)CrossRefMathSciNetGoogle Scholar
  3. [BCC+11]
    Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Static analysis by abstract interpretation of embedded critical software. ACM SIGSOFT Software Engineering Notes 36(1), 1–8 (2011)CrossRefGoogle Scholar
  4. [BGLM05]
    Biswas, P., Grieder, P., Löfberg, J., Morari, M.: A Survey on Stability Analysis of Discrete-Time Piecewise Affine Systems. In: IFAC World Congress, Prague, Czech Republic (July 2005)Google Scholar
  5. [CC77]
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Los Angeles, California, pp. 238–252. ACM Press, New York (1977)CrossRefGoogle Scholar
  6. [CH78]
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Aho, A., Zilles, S., Szymanski, T. (eds.) POPL, pp. 84–96. ACM Press (1978)Google Scholar
  7. [CS11]
    Colón, M.A., Sankaranarayanan, S.: Generalizing the template polyhedral domain. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 176–195. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. [CSS03]
    Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. [Fer04]
    Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 33–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. [FR94]
    Filé, G., Ranzato, F.: Improving abstract interpretations by systematic lifting to the powerset. In: Logic Programming, Proc. of the 1994 International Symposium, Ithaca, New York, USA, November 13-17, pp. 655–669 (1994)Google Scholar
  11. [GGP09]
    Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain taylor1+. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. [GSA+12]
    Gawlitza, T., Seidl, H., Adjé, A., Gaubert, S., Goubault, E.: Abstract interpretation meets convex optimization. J. Symb. Comput. 47(12), 1416–1446 (2012)CrossRefzbMATHGoogle Scholar
  13. [IS00]
    Ikramov, K.D., Savel’eva, N.V.: Conditionally definite matrices. Journal of Mathematical Sciences 98(1), 1–50 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. [Joh03]
    Johansson, M.: On modeling, analysis and design of piecewise linear control systems. In: Proc. of the 2003 International Symposium on Circuits and Systems, ISCAS 2003, vol. 3, pp. III–646–III–649 (May 2003)Google Scholar
  15. [MFTM00]
    Mignone, D., Ferrari-Trecate, G., Morari, M.: Stability and stabilization of piecewise affine and hybrid systems: An lmi approach. In: Proc. of the 39th IEEE Conference on Decision and Control, vol. 1, pp. 504–509 (2000)Google Scholar
  16. [Min01]
    Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: Danvy, O., Filinski, A. (eds.) PADO-II 2001. LNCS, vol. 2053, pp. 155–172. Springer, Heidelberg (2001)Google Scholar
  17. [Min06]
    Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006)CrossRefzbMATHGoogle Scholar
  18. [MJ81]
    Martin, D.H., Jacobson, D.H.: Copositive matrices and definiteness of quadratic forms subject to homogeneous linear inequality constraints. Linear Algebra and its Applications 35(0), 227–258 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  19. [Mot51]
    Motzkin, T.S.: Two consequences of the transposition theorem on linear inequalities. Econometrica 19(2), 184–185 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  20. [RG13]
    Roux, P., Garoche, P.-L.: Integrating policy iterations in abstract interpreters. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 240–254. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. [RJ00]
    Rantzer, A., Johansson, M.: Piecewise linear quadratic optimal control. IEEE Transactions on Automatic Control 45(4), 629–637 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  22. [RJGF12]
    Roux, P., Jobredeaux, R., Garoche, P.-L., Feron, E.: A generic ellipsoid abstract domain for linear time invariant systems. In: Dang, T., Mitchell, I. (eds.) HSCC, pp. 105–114. ACM (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Assalé Adjé
    • 1
  • Pierre-Loïc Garoche
    • 1
  1. 1.Onera, the French Aerospace Lab, France Université de ToulouseToulouseFrance

Personalised recommendations