Advertisement

Datacentric Semantics for Verification of Privacy Policy Compliance by Mobile Applications

  • Agostino Cortesi
  • Pietro Ferrara
  • Marco Pistoia
  • Omer Tripp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8931)

Abstract

We introduce an enhanced information-flow analysis for tracking the amount of confidential data that is possibly released to third parties by a mobile application. The main novelty of our solution is that it can explicitly keep track of the footprint of data sources in the expressions formed and manipulated by the program, as well as of transformations over them, yielding a lazy approach with finer granularity, which may reduce false positives with respect to state-of-the-art information-flow analyses.

Keywords

Abstract Interpretation Privacy Information-flow Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvim, M.S., Scedrov, A., Schneider, F.B.: When not all bits are equal: Worth-based information flow. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 120–139. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Amtoft, T., Banerjee, A.: A logic for information flow analysis with an application to forward slicing of simple imperative programs. Science of Compututer Programming 64, 3–28 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    AppBrain. Adnetwork stats, http://www.appbrain.com/stats/libraries/ad
  4. 4.
    Arzt, S., Rasthofer, S., et al.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In: PLDI. ACM (2014)Google Scholar
  5. 5.
    Askarov, A., Myers, A.: A semantic framework for declassification and endorsement. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 64–84. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cavadini, S.: Secure slices of insecure programs. In: ASIACCS. ACM Press (2008)Google Scholar
  7. 7.
    Chaudhuri, A.: Language-based security on android. In: PLAS. ACM (2009)Google Scholar
  8. 8.
    Cortesi, A., Costantini, G., Ferrara, P.: A survey on product operators in abstract interpretation. EPTCS 129, 325–336 (2013)CrossRefGoogle Scholar
  9. 9.
    Costantini, G., Ferrara, P., Cortesi, A.: Static analysis of string values. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 505–521. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Cousot, P., Cousot, R.: Abstract interpretation: Past, present and future. In: CSL-LICS. ACM (2014)Google Scholar
  11. 11.
    Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic and scalable array content analysis. In: POPL. ACM (2011)Google Scholar
  12. 12.
    Denning, D.E.: A lattice model of secure information flow. Communications of the ACM 19, 236–243 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Ebadi, H., Sands, D., Schneider, G.: Differential privacy: Now it’s getting personal. In: POPL. ACM (2015)Google Scholar
  15. 15.
    Enck, W., Gilbert, P., et al.: Taintdroid: An information flow tracking system for real-time privacy monitoring on smartphones. Comm. of the ACM 57(3), 99–106 (2014)CrossRefGoogle Scholar
  16. 16.
    Ferrara, P.: Generic combination of heap and value analyses in abstract interpretation. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 302–321. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Halder, R., Zanioli, M., Cortesi, A.: Information leakage analysis of database query languages. In: SAC. ACM (2014)Google Scholar
  18. 18.
    Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive information flow control based on program dependence graphs. International Journal of Information Security 8, 399–422 (2009)CrossRefGoogle Scholar
  19. 19.
    Hornyack, P., Han, S., Jung, J., Schechter, S.E., Wetherall, D.: These aren’t the droids you’re looking for: retrofitting android to protect data from imperious applications. In: CCS. ACM (2011)Google Scholar
  20. 20.
    Krohn, M.N., Tromer, E.: Noninterference for a practical DIFC-based operating system. In: IEEE S&P. IEEE (2009)Google Scholar
  21. 21.
    Li, B.: Analyzing information-flow in java program based on slicing technique. SIGSOFT Softw. Eng. Notes 27, 98–103 (2002)CrossRefGoogle Scholar
  22. 22.
    Lochbihler, A., Snelting, G.: On temporal path conditions in dependence graphs. Journal of Automated Software Engineering 16, 263–290 (2009)CrossRefGoogle Scholar
  23. 23.
    Logozzo, F.: Class invariants as abstract interpretation of trace semantics. Computer Languages, Systems & Structures 35, 100–142 (2009)CrossRefGoogle Scholar
  24. 24.
    Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: Chex: statically vetting android apps for component hijacking vulnerabilities. In: CCS. ACM (2012)Google Scholar
  25. 25.
    McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capacity. In: PLDI. ACM (2008)Google Scholar
  26. 26.
    Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006)CrossRefzbMATHGoogle Scholar
  27. 27.
    Myers, A.C., Liskov, B.: A decentralized model for information flow control. In: SOSP. ACM (1997)Google Scholar
  28. 28.
    Nanevski, A., Banerjee, A., Garg, D.: Dependent type theory for verification of information flow and access control policies. ACM TOPLAS 35(2), 6:1–6:41 (2013)Google Scholar
  29. 29.
    Omoronyia, I., Cavallaro, L., et al.: Engineering adaptive privacy: on the role of privacy awareness requirements. In: ICSE. IEEE/ACM (2013)Google Scholar
  30. 30.
    Pottier, F., Simonet, V.: Information flow inference for ml. ACM Transactions on Programming Languages and Systems 25, 117–158 (2003)CrossRefGoogle Scholar
  31. 31.
    Rasthofer, S., Lovat, E., Bodden, E.: Droid force: Enforcing complex, data-centric, system-wide policies in android. In: ARES (2014)Google Scholar
  32. 32.
    Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal on Selected Areas in Communications 21, 5–19 (2003)CrossRefGoogle Scholar
  33. 33.
    Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. Journal of Computer Security 17, 517–548 (2009)Google Scholar
  34. 34.
    Smith, G.: Principles of secure information flow analysis. In: Christodorescu, M., et al. (eds.) Malware Detection. Advances in Information Security, vol. 27, pp. 291–307. Springer (2007)Google Scholar
  35. 35.
    Smith, S.F., Thober, M.: Refactoring programs to secure information flows. In: PLAS. ACM (2006)Google Scholar
  36. 36.
    Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans. Software Eng. 35(1), 67–82 (2009)CrossRefGoogle Scholar
  37. 37.
    Sridharan, M., Artzi, S., Pistoia, M., Guarnieri, S., Tripp, O., Berg, R.: F4f: Taint analysis of framework-based web applications. In: OOPSLA. ACM (2011)Google Scholar
  38. 38.
    Tripp, O., Ferrara, P., Pistoia, M.: Hybrid security analysis of web javascript code via dynamic partial evaluation. In: ISSTA. ACM (2014)Google Scholar
  39. 39.
    Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: Effective taint analysis of web applications. In: PLDI. ACM (2009)Google Scholar
  40. 40.
    Tripp, O., Rubin, J.: A bayesian approach to privacy enforcement in smartphones. In: USENIX Security (2014)Google Scholar
  41. 41.
    Xiao, X., Tillmann, N., Fähndrich, M., de Halleux, J., Moskal, M.: User-aware privacy control via extended static-information-flow analysis. In: ASE. ACM (2012)Google Scholar
  42. 42.
    Zanioli, M., Ferrara, P., Cortesi, A.: Sails: Static analysis of information leakage with sample. In: SAC. ACM (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Agostino Cortesi
    • 1
    • 2
  • Pietro Ferrara
    • 1
  • Marco Pistoia
    • 1
  • Omer Tripp
    • 1
  1. 1.IBM Thomas J.Watson Research CenterUSA
  2. 2.Università Ca’ Foscari VeneziaItaly

Personalised recommendations