Foundations of Quantitative Predicate Abstraction for Stability Analysis of Hybrid Systems

  • Pavithra Prabhakar
  • Miriam García Soto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8931)

Abstract

We investigate the formal connections between “quantitative predicate abstractions” for stability analysis of hybrid systems and “continuous simulation relations”. It has been shown recently that stability is not bisimulation invariant, and hence, stronger notions which extend the classical simulation and bisimulation relations with continuity constraints have been proposed, which force preservation of stability. In another direction, a quantitative version of classical predicate abstraction has been proposed for approximation based stability analysis of certain classes of hybrid systems. In this paper, first, we present a general framework for quantitative predicate abstraction for stability analysis. We then show that this technique can be interpreted as constructing a one dimensional system which continuously simulates the original system. This induces an ordering on the class of abstract systems and hence, formalizes the notion of refinement.

Keywords

Stability Analysis Simulations/Bisimulations Hybrid Systems Abstraction-Refinement 

References

  1. 1.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Transactions on Embedded Computing Systems 5(1), 152–199 (2006)CrossRefGoogle Scholar
  4. 4.
    Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation, PLDI 2001, pp. 203–213. ACM, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun. ACM 54(5), 88–98 (2011)CrossRefGoogle Scholar
  6. 6.
    Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Systems, Control Systems Magazine 29, 28–93 (2009)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Graf, S., Saidi, H.: Construction of abstact state graphs with PVS. In: Proceedings of the International Conference on Computer Aided Verification, pp. 72–83 (1997)Google Scholar
  8. 8.
    Henzinger, T.A.: The Theory of Hybrid Automata. In: Proceedings of the IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996)Google Scholar
  9. 9.
    Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.: Simulation-guided lyapunov analysis for hybrid dynamical systems. In: 17th International Conference on Hybrid Systems: Computation and Control (part of CPS Week), HSCC 2014, Berlin, Germany, April 15-17, pp. 133–142 (2014)Google Scholar
  10. 10.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Saddle River (1996)Google Scholar
  11. 11.
    Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: A survey of recent results. IEEE Transactions on Automatic Control 54(2), 308–322 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lou van den Dries, A.M., Marker, D.: The elementary theory of restricted analytic fields with exponentiation. Annals of Mathematics, Second Series 140(1), 183–205 (1994)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)Google Scholar
  14. 14.
    Möhlmann, E., Theel, O.: Stabhyli: A tool for automatic stability verification of non-linear hybrid systems. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 107–112. ACM, New York (2013)Google Scholar
  15. 15.
    Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions using the sum of squares decomposition. In: Conference on Decision and Control (2002)Google Scholar
  16. 16.
    Parrilo, P.A.: Structure Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena, CA (May 2000)Google Scholar
  17. 17.
    Prabhakar, P., Dullerud, G.E., Viswanathan, M.: Pre-orders for reasoning about stability. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 197–206 (2012)Google Scholar
  18. 18.
    Prabhakar, P., Liu, J., Murray, R.M.: Pre-orders for reasoning about stability properties with respect to input of hybrid systems. In: Proceedings of the International Conference on Embedded Software, EMSOFT 2013, Montreal, QC, Canada, September 29-October 4, pp. 1–10 (2013)Google Scholar
  19. 19.
    Prabhakar, P., Garcia Soto, M.: Abstraction based model-checking of stability of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 280–295. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Prabhakar, P., Soto, M.G.: An algorithmic approach to stability verification of polyhedral switched systems. In: American Control Conference (2014)Google Scholar
  21. 21.
    Sontag, E.D.: Input to state stability: Basic concepts and results. In: Nonlinear and Optimal Control Theory, pp. 163–220. Springer (2006)Google Scholar
  22. 22.
    Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System Design 32(1), 57–83 (2008)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Pavithra Prabhakar
    • 1
  • Miriam García Soto
    • 1
  1. 1.IMDEA Software InstituteMadridSpain

Personalised recommendations