Advertisement

Abstracting and Counting Synchronizing Processes

  • Zeinab Ganjei
  • Ahmed Rezine
  • Petru Eles
  • Zebo Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8931)

Abstract

We address the problem of automatically establishing synchronization dependent correctness (e.g. due to using barriers or ensuring absence of deadlocks) of programs generating an arbitrary number of concurrent processes and manipulating variables ranging over an infinite domain. Automatically checking such properties for these programs is beyond the capabilities of current verification techniques. For this purpose, we describe an original logic that mixes two sorts of variables: those shared and manipulated by the concurrent processes, and ghost variables referring to the number of processes satisfying predicates on shared and local program variables. We then combine existing works on counter, predicate, and constrained monotonic abstraction and nest two cooperating counter example based refinement loops for establishing correctness (safety expressed as non reachability of configurations satisfying formulas in our logic). We have implemented a tool (Pacman, for predicated constrained monotonic abstraction) and used it to perform parameterized verification for several programs whose correctness crucially depends on precisely capturing the number of synchronizing processes.

Keywords

parameterized verification counting logic barrier synchronization deadlock freedom multithreaded programs counter abstraction predicate abstraction constrained monotonic abstraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Haziza, F., Holík, L.: All for the price of few. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Annichini, A., Bensalem, S., Bouajjani, A., Habermehl, P., Lakhnech, Y.: Verification of infinite-state systems by combining abstraction and reachability analysis. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 146–159. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: Proc. LICS 1996, 11th IEEE Int. Symp. on Logic in Computer Science, pp. 313–321 (1996)Google Scholar
  4. 4.
    Abdulla, P.A., Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., Rezine, A.: Constrained monotonic abstraction: A CEGAR for parameterized verification. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 86–101. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 62–77. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Basler, G., Hague, M., Kroening, D., Ong, C.-H.L., Wahl, T., Zhao, H.: Boom: Taking boolean program model checking one step further. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 145–149. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate abstraction for shared-variable concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate abstraction for shared-variable concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Farzan, A., Kincaid, Z., Podelski, A.: Proofs that count. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, pp. 151–164. ACM, New York (2014)Google Scholar
  10. 10.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Comput. Sci. 256(1-2), 63–92 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Ganjei, Z., Rezine, A., Eles, P., Peng, Z.: Abstracting and counting synchronizing processes. Technical report, Linköping University, Software and Systems (2014)Google Scholar
  13. 13.
    Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 645–659. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kaiser, A., Kroening, D., Wahl, T.: Lost in abstraction: Monotonicity in multi-threaded programs. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 141–155. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Rezine, A.: Parameterized Systems: Generalizing and Simplifying Automatic Verification. PhD thesis, Uppsala University (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zeinab Ganjei
    • 1
  • Ahmed Rezine
    • 1
  • Petru Eles
    • 1
  • Zebo Peng
    • 1
  1. 1.Linköping UniversitySweden

Personalised recommendations