Advertisement

Conducting a Web Browsing Behaviour Study – An Educational Scenario

  • Martin Labaj
  • Mária Bieliková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8939)

Abstract

Web browsing behaviour is a matter of study in several fields – from web usage mining, to its applications in adaptive and personalized systems. Current web browsers allow for parallel browsing – opening multiple web pages at once and switching between them. To capture such behaviour, client-side observations are typically performed, where attracting and retaining enough participants poses a challenge. In this paper, we describe a study based on an experiment on logging the parallel browsing behaviour, both in an adaptive web-based educational system and on the open Web, while using the educational system as a tool for recruiting and motivating the participants. We focus on how various types of users (here students), including their personality information, participated in the experiment regarding churn and their observed behaviour. The paper concludes with ”lessons learned” important to consider when planning and performing similar studies.

Keywords

web browsing study tabbed web browsing educational systems churn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnin, G., Brun, A., Boyer, A.: Towards Tabbing Aware Recommendations. In: Proc. of the First Int. Conf. on Intelligent Interactive Technologies and Multimedia - IITM 2010, pp. 316–323. ACM Press, New York (2010)CrossRefGoogle Scholar
  2. 2.
    Dave, K.S., Vaingankar, V., Kolar, S., Varma, V.: Timespent Based Models for Predicting User Retention. In: Proc. of the 22nd Int. Conf. on World Wide Web, WWW 2013, pp. 331–342 (2013)Google Scholar
  3. 3.
    Dror, G., Pelleg, D., Rokhlenko, O., Szpektor, I.: Churn Prediction in New Users of Yahoo! Answers. In: Proc. of the 21st Int. Conf. Companion on World Wide Web - WWW 2012 Companion, pp. 829–834. ACM Press, New York (2012)CrossRefGoogle Scholar
  4. 4.
    Dubroy, P., Balakrishnan, R.: A Study of Tabbed Browsing Among Mozilla Firefox Users. In: Proc. of the 28th Int. Conf. on Human Factors in Computing Systems, CHI 2010, pp. 673–682. ACM Press, New York (2010)Google Scholar
  5. 5.
    Felder, R., Silverman, L.: Learning and Teaching Style in Engineering Education Richard. Eng. Educ. 78( 7), 674–681 (1988)Google Scholar
  6. 6.
    Filipčík, R., Bieliková, M.: Motivating Learners in Adaptive Educational System by Dynamic Score and Personalized Activity Stream. In: Proc. of 9th Int. Workshop on Semantic and Social Media Adaptation and Personalization – SMAP 2014. IEEE (to appear, 2014)Google Scholar
  7. 7.
    Huang, J., Lin, T., White, R.W.: No Search Result Left Behind: Branching Behavior with Browser Tabs. In: Proc. of the 5th ACM Int. Conf. on Web Search and Data Mining - WSDM 2012, pp. 203–212. ACM Press, New York (2012)Google Scholar
  8. 8.
    Huang, J., White, R.W.: Parallel browsing behavior on the web. In: Proc. of the 21st Int. Conf. on Hypertext and Hypermedia - HT 2010, pp. 13–17. ACM Press, New York (2010)Google Scholar
  9. 9.
    Chierichetti, F., Kumar, R., Tomkins, A.: Stochastic Models for Tabbed Browsing. In: Proceedings of the 19th Int. Conf. on World Wide Web - WWW 2010, pp. 241–250. ACM Press, New York (2010)Google Scholar
  10. 10.
    Labaj, M., Bieliková, M.: Modeling parallel web browsing behavior for web-based educational systems. In: Proc. of 10th Int. Conf. on Emerging eLearning Technologies and Applications – ICETA 2012, pp. 229–234. IEEE (2012)Google Scholar
  11. 11.
    Labaj, M., Bieliková, M.: Tabbed Browsing Behavior as a Source for User Modeling. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 388–391. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Meiss, M., Duncan, J., Gonçalves, B., Ramasco, J.J., Menczer, F.: What’s in a Session: Tracking Individual Behavior on theWeb. In: Proc. of the 20th Conf. on Hypertext and Hypermedia - HT 2009, p. 173. ACM Press, New York (2009)Google Scholar
  13. 13.
    Račko, M.: Automatic Web Content Enrichment Using Parallel Web Browsing. In: Proc. of 10th Student Reasearch Conference in Informatics and Information Technologies -IIT.SRC 2014, STU Bratislava, pp. 173–178 (2014)Google Scholar
  14. 14.
    Sarkar, C., Wohn, D.Y., Lampe, C.: Predicting Length of Membership in Online Community “Everything2” Using Feedback. In: Proc. of the Conf. on Computer Supported Cooperative Work Companion, CSCW 2012, pp. 207–210. ACM Press, New York (2012)Google Scholar
  15. 15.
    Šajgalík, M., Barla, M., Bieliková, M.: Efficient Representation of the Lifelong Web Browsing User Characteristics. In: Proc. of the 2nd Workshop on LifeLong User Modelling, in Conjunction with UMAP 2013, pp. 21–30 CEUR-WS (2013)Google Scholar
  16. 16.
    Šimko, J., Šimko, M., Bieliková, M., Ševcech, J., Burger, R.: Classsourcing: Crowd-Based Validation of Question-Answer Learning Objects. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 62–71. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Šimko, M., Barla, M., Bieliková, M.: ALEF: A framework for adaptive web-based learning 2.0. In: Reynolds, N., Turcsányi-Szabó, M. (eds.) KCKS 2010. IFIP AICT, vol. 324, pp. 367–378. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Viermetz, M., Stolz, C., Gedov, V., Skubacz, M.: Relevance and Impact of Tabbed Browsing Behavior on Web Usage Mining. In: Proc. of IEEE/WIC/ACM Int. Conf. on Web Intelligence - WI 2006, pp. 262–269. IEEE (2006)Google Scholar
  19. 19.
    Von der Weth, C., Hauswirth, M.: DOBBS: Towards a Comprehensive Dataset to Study the Browsing Behavior of Online Users. In: Proc. of the 2013 IEEE/WIC/ACM Int. Joint Conf. on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) WI-AT 2013, pp. 51–56. IEEE (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Martin Labaj
    • 1
  • Mária Bieliková
    • 1
  1. 1.Faculty of Informatics and Information TechnologiesSlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations