Optimal State Reductions of Automata with Partially Specified Behaviors

  • Nelma Moreira
  • Giovanni Pighizzini
  • Rogério Reis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8939)

Abstract

Nondeterministic finite automata with don’t care states, [4] namely states which neither accept nor reject, are considered. A cha- racterization of deterministic automata compatible with such a device is obtained. Furthermore, an optimal state bound for the smallest compatible deterministic automata is provided. Finally, it is proved that the problem of minimizing nondeterministic and deterministic don’t care automata is NP-complete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal separating dFA’s for compositional verification. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3), 149–158 (1986)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Damiani, M.: The state reduction of nondeterministic finite-state machines. IEEE Trans. CAD 16(11), 1278–1291 (1997)CrossRefGoogle Scholar
  4. 4.
    Eisinger, J., Klaedtke, F.: Don’t care words with an application to the automata-based approach for real addition. Formal Methods in System Design 33(1-3), 85–115 (2008), http://dx.doi.org/10.1007/s10703-008-0057-6 CrossRefMATHGoogle Scholar
  5. 5.
    Geffert, V., Pighizzini, G.: Pairs of complementary unary languages with “balanced” nondeterministic automata. Algorithmica 63(3), 571–587 (2012)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Gold, E.M.: Complexity of automaton identification from given data. Inf. Contr. 37(3), 302–320 (1978)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Jirásková, G., Pighizzini, G.: Optimal simulation of self-verifying automata by deterministic automata. Inf. Comput. 209(3), 528–535 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: A fully implicit algorithm for exact state minimization. In: Proc. ACM/IEEE Design Automation Conf., pp. 684–690 (1994)Google Scholar
  9. 9.
    Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: Theory and algorithms for state minimization of nondeterministic FSMs. IEEE Trans. CAD 16(11), 1311–1322 (1997)CrossRefGoogle Scholar
  10. 10.
    Moon, J., Moser, L.: On cliques in graphs. Israel J. Math 3, 23–28 (1965)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified sequential switching functions. IRE Trans. on Elect. Comput. 3, 356–367 (1959)CrossRefGoogle Scholar
  12. 12.
    Pena, J.M., Oliveira, A.L.: A new algorithm for exact reduction of incompletely specified finite state machines. IEEE Trans. CAD 18(11), 1619–1632 (1999)CrossRefGoogle Scholar
  13. 13.
    Pfleeger, C.P.: State reduction in incompletely specified finite-state machines. IEEE Trans. Comput. 22(C), 1099–1102 (1973)Google Scholar
  14. 14.
    Rho, J.K., Hachtel, G., Somenzi, F., Jacoby, R.: Exact and heuristic algorithms for the minimization of incompletely specified state machines. IEEE Trans. CAD 13, 167–177 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nelma Moreira
    • 1
  • Giovanni Pighizzini
    • 2
  • Rogério Reis
    • 1
  1. 1.Centro de Matemática e Faculdade de Ciências daUniversidade do PortoPortugal
  2. 2.Dipartimento di InformaticaUniversità degli Studi di MilanoItaly

Personalised recommendations