Advertisement

Maximally Permissive Controlled System Synthesis for Modal Logic

  • Alan C. van Hulst
  • Michel A. Reniers
  • Wan J. Fokkink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8939)

Abstract

We propose a new method for controlled system synthesis on non-deterministic automata, which includes the synthesis for deadlock- freeness, as well as invariant and reachability expressions. Our technique restricts the behavior of a Kripke-structure with labeled transitions, representing the uncontrolled system, such that it adheres to a given requirement specification in an expressive modal logic, while all non-invalidating behavior is retained. This induces maximal permissiveness in the context of supervisory control. Research presented in this paper allows a system model to be constrained according to a broad set of liveness, safety and fairness specifications of desired behavior, and embraces most concepts from Ramadge-Wonham supervisory control, including controllability and marker-state reachability. The synthesis construction is formally verified using the Coq proof assistant.

Keywords

Model Check Modal Logic Supervisory Control Reachable State Synthesis Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aminof, B., Mogavero, F., Murano, A.: Synthesis of hierarchical systems. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 42–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Arnold, A., Vincent, I., Walukiewicz, I.: Games for synthesis of controllers with partial observation. Theoretical Computer Science 1(303), 7–34 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Arnold, A., Walukiewicz, I.: Nondeterministic controllers of nondeterministic processes. In: Logic and Automata, pp. 29–52. Amsterdam University Press (2008)Google Scholar
  4. 4.
    Baeten, J., van Beek, B., van Hulst, A., Markovski, J.: A process algebra for supervisory coordination. In: Process Algebra and Coordination. EPTCS, pp. 36–55 (2011)Google Scholar
  5. 5.
    Bull, R., Segerberg, K.: Basic modal logic. In: Handbook of Philosophical Logic, pp. 1–88. Springer (1994)Google Scholar
  6. 6.
    Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Springer (1999)Google Scholar
  7. 7.
    Cleaveland, R., Steffen, B.: A linear-time model checking algorithm for the alternation-free modal mu-calculus. Formal Methods in System Design 2, 121–147 (1993)CrossRefzbMATHGoogle Scholar
  8. 8.
    D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesis of live behaviour models. In: Foundations of Software Engineering, pp. 77–86. ACM Press (2010)Google Scholar
  9. 9.
    D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesizing nonanomalous event-based controllers for liveness goals. ACM Transactions on Software Engineering Methodology 22(1), 1–36 (2013)CrossRefGoogle Scholar
  10. 10.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32(1), 137–161 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Lustig, Y., Vardi, M.: Synthesis from recursive-components libraries. In: Games, Automata, Logics and Formal Verification. EPTCS, pp. 1–16 (2011)Google Scholar
  12. 12.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Principles of Programming Languages, pp. 179–190. ACM Press (1989)Google Scholar
  13. 13.
    Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Sokolsky, O., Smolka, S.: Incremental model checking in the modal mu-calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. 15.
    van Glabbeek, R.: The linear time-branching time spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)Google Scholar
  16. 16.
    van Hulst, A.: Coq v8.3 proofs (2014), http://seweb.se.wtb.tue.nl/~ahulst/sofsem/
  17. 17.
    van Hulst, A., Reniers, M., Fokkink, W.: Maximal synthesis for Hennessy-Milner logic. In: Application of Concurrency to System Design, pp. 1–10. IEEE (2013)Google Scholar
  18. 18.
    van Hulst, A., Reniers, M., Fokkink, W.: Maximal synthesis for Hennessy-Milner logic with the box-modality. In: Workshop on Discrete Event Systems, pp. 278–285. IEEE (2014)Google Scholar
  19. 19.
    van Hulst, A., Reniers, M., Fokkink, W.: Maximally permissive controlled system synthesis for modal logic (2014), preprint at http://arxiv.org/abs/1408.3317/
  20. 20.
    Ziller, R., Schneider, K.: Combining supervisory synthesis and model checking. ACM Transactions on Embedded Computing Systems 4(2), 331–362 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alan C. van Hulst
    • 1
  • Michel A. Reniers
    • 1
  • Wan J. Fokkink
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations