Machine Characterizations for Parameterized Complexity Classes Beyond Para-NP

  • Ronald de Haan
  • Stefan Szeider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8939)


Due to the remarkable power of modern SAT solvers, one can efficiently solve NP-complete problems in many practical settings by encoding them into SAT. However, many important problems in various areas of computer science lie beyond NP, and thus we cannot hope for polynomial-time encodings into SAT. Recent research proposed the use of fixed-parameter tractable (fpt) reductions to provide efficient SAT encodings for these harder problems. The parameterized complexity classes ∃  k  ∀ * and ∀  k  ∃ * provide strong theoretical evidence that certain parameterized problems are not fpt-reducible to SAT. Originally, these complexity classes were defined via weighted satisfiability problems for quantified Boolean formulas, extending the general idea for the canonical problems for the Weft Hierarchy.

In this paper, we provide alternative characterizations of ∃  k  ∀ * and ∀  k  ∃ * in terms of first-order logic model checking problems and problems involving alternating Turing machines with appropriate time bounds and bounds on the number of alternations. We also identify parameterized Halting Problems for alternating Turing machines that are complete for these classes.

The alternative characterizations provide evidence for the robustness of the new complexity classes and extend the toolbox for establishing membership results. As an illustration, we consider various parameterizations of the 3-coloring extension problem.


Turing Machine Parameterized Problem Computation Path Boolean Formula Judgment Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajtai, M., Fagin, R., Stockmeyer, L.J.: The closure of monadic NP. J. of Computer and System Sciences 60(3), 660–716 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arora, S., Barak, B.: Computational Complexity – A Modern Approach. Cambridge University Press (2009)Google Scholar
  3. 3.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)Google Scholar
  4. 4.
    Cesati, M.: The Turing way to parameterized complexity. J. of Computer and System Sciences 67, 654–685 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, Y., Flum, J.: A parameterized halting problem. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 364–397. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013)Google Scholar
  8. 8.
    Endriss, U., de Haan, R., Szeider, S.: Parameterized complexity results for agenda safety in judgment aggregation. In: Proceedings of the 5th International Workshop on Computational Social Choice (COMSOC 2014). Carnegie Mellon University (2014)Google Scholar
  9. 9.
    Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2013), pp. 320–327. AAAI Press (2013)Google Scholar
  10. 10.
    Flum, J., Grohe, M.: Describing parameterized complexity classes. Information and Computation 187(2), 291–319 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. An EATCS Series, vol. XIV. Springer, Berlin (2006)Google Scholar
  12. 12.
    Gomes, C.P., Kautz, H., Sabharwal, A., Selman, G.: Satisfiability solvers. In Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3, pp. 89–134. Elsevier (2008)Google Scholar
  13. 13.
    de Haan, R., Szeider, S.: Fixed-parameter tractable reductions to SAT. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 85–102. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    De Haan, R., Szeider, S.: The parameterized complexity of reasoning problems beyond NP. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24. AAAI Press (2014)Google Scholar
  15. 15.
    De Haan, R., Szeider, S.: The parameterized complexity of reasoning problems beyond NP. Technical Report 1312.1672v3, (2014)Google Scholar
  16. 16.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley Series in Computer Science. Addison-Wesley-Longman (2001)Google Scholar
  17. 17.
    Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical success. Communications of the ACM 52(8), 76–82 (2009)CrossRefGoogle Scholar
  18. 18.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: SWAT, pp. 125–129. IEEE Computer Soc. (1972)Google Scholar
  19. 19.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  21. 21.
    Pfandler, A., Rümmele, S., Szeider, S.: Backdoors to abduction. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013. AAAI Press/IJCAI (2013)Google Scholar
  22. 22.
    Sakallah, K.A., Marques-Silva, J.: Anatomy and empirical evaluation of modern SAT solvers. Bulletin of the European Association for Theoretical Computer Science 103, 96–121 (2011)MathSciNetGoogle Scholar
  23. 23.
    Stockmeyer, L.J.: The polynomial-time hierarchy. Theoretical Computer Science 3(1), 1–22 (1976)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3(1), 23–33 (1976)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ronald de Haan
    • 1
  • Stefan Szeider
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations