Fastest, Average and Quantile Schedule

  • Armin Fügenschuh
  • Konstanty Junosza-Szaniawski
  • Torsten Klug
  • Sławomir Kwasiborski
  • Thomas Schlechte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8939)

Abstract

We consider problems concerning the scheduling of a set of trains on a single track. For every pair of trains there is a minimum headway, which every train must wait before it enters the track after another train. The speed of each train is also given. Hence for every schedule - a sequence of trains - we may compute the time that is at least needed for all trains to travel along the track in the given order. We give the solution to three problems: the fastest schedule, the ave- rage schedule, and the problem of quantile schedules. The last problem is a question about the smallest upper bound on the time of a given fraction of all possible schedules. We show how these problems are related to the travelling salesman problem. We prove NP-completeness of the fastest schedule problem, NP-hardness of quantile of schedules problem, and polynomiality of the average schedule problem. We also describe some algorithms for all three problems. In the solution of the quantile problem we give an algorithm, based on a reverse search method, ge- nerating with polynomial delay all Eulerian multigraphs with the given degree sequence and a bound on the number of such multigraphs. A better bound is left as an open question.

Keywords

schedule generating permutations with repetitions Eulerian multigraphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear graphs. Stevin, S.: Wis-en Natuurkundig Tijdschrift 28, 203 (1951)MATHGoogle Scholar
  2. 2.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65(1), 21–46 (1996)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bellman, R.: Dynamic programming treatment of the travelling salesman problem. Journal of the ACM (JACM) 9(1), 61–63 (1962)CrossRefMATHGoogle Scholar
  4. 4.
    Lucas, É.: Récréations mathématiques, vol. 1. Gauthier-Villars (1882)Google Scholar
  5. 5.
    Kirchhoff, G.R.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)CrossRefGoogle Scholar
  6. 6.
    Schlechte, T., Borndörfer, R., Erol, B., Graffagnino, T., Swarat, E.: Micro–macro transformation of railway networks. Journal of Rail Transport Planning & Management 1(1), 38–48 (2011)CrossRefGoogle Scholar
  7. 7.
    Tarjan, R.E.: A note on finding the bridges of a graph. Information Processing Letters 2(6), 160–161 (1974)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Armin Fügenschuh
    • 1
  • Konstanty Junosza-Szaniawski
    • 2
  • Torsten Klug
    • 3
  • Sławomir Kwasiborski
    • 2
  • Thomas Schlechte
    • 3
  1. 1.Helmut Schmidt University / University of the Federal Armed Forces HamburgHamburgGermany
  2. 2.Politechnika Warszawska, MatematykiWarszawaPoland
  3. 3.Department of OptimizationZuse Institute BerlinBerlinGermany

Personalised recommendations