Deterministic Rendezvous in Restricted Graphs

  • Ashley Farrugia
  • Leszek Gąsieniec
  • Łukasz Kuszner
  • Eduardo Pacheco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8939)


In this paper we consider the problem of synchronous rendezvous in which two anonymous mobile entities (robots) A and B are expected to meet at the same time and point in a graph G = (V,E). Most of the work devoted to rendezvous in graphs assumes that robots have access to the same sets of nodes and edges, where the topology of connections may be initially known or unknown. In our work we assume the movement of robots is restricted by the topological properties of the graph space coupled with the intrinsic characteristics of robots preventing them from visiting certain edges in E.

We consider three rendezvous models reflecting on restricted maneuverability of robots A and B. In Edge Monotonic Model each robot X ∈ {A,B} has weight wX and each edge in E has a weight restriction. Consequently, a robot X is only allowed to traverse edges with weight restrictions greater that wX. In the remaining two models graph G is unweighted and the restrictions refer to more arbitrary subsets of traversable nodes and edges. In particular, in Node Inclusive Model the set of nodes VX available to robot X, for X ∈ {A,B} satisfies the condition VA ⊆ VB or vice versa, and in Blind Rendezvous Model the relation between VA and VB is arbitrary. In each model we design and analyze efficient rendezvous algorithms. We conclude with a short discussion on the asynchronous case and related open problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: Proc. PODC 2013, pp. 250–259 (2013)Google Scholar
  2. 2.
    Alpern, S.: The rendezvous search problem. SIAM J. Control and Optimization (33), 673–683 (1995)Google Scholar
  3. 3.
    Alpern, S.: Rendezvous search on labeled networks. Naval Reaserch Logistics (49), 256–274 (2002)Google Scholar
  4. 4.
    Alpern, S., Fokkink, R.: Gąsieniec, L., Lindelauf, R., Subrahmanian, V.S.: Search Theory, A Game Theoretic Perspective. Springer (2013)Google Scholar
  5. 5.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Publishers (2002)Google Scholar
  6. 6.
    Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. Symp. on Computational Geometry, pp. 365–373 (1998)Google Scholar
  7. 7.
    Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research (49), 107–118 (2001)Google Scholar
  8. 8.
    Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability (28), 839–851 (1990)Google Scholar
  9. 9.
    Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. Control and Optimization (36), 1880–1889 (1998)Google Scholar
  10. 10.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Reaserch Logistics (48), 722–731 (2001)Google Scholar
  11. 11.
    Chen, S., Russell, A., Samanta, A., Sundaram, R.: Deterministic Blind Rendezvous in Cognitive Radio Networks. In: Proc. ICDCS (2014)Google Scholar
  12. 12.
    Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell Me Where I Am So I Can Meet You Sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Collins, A., Czyzowicz, J., Gąsieniec, L., Kosowski, A., Martin, R.: Synchronous Rendezvous for Location-Aware Agents. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 447–459. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Czyzowicz, J., Gąsieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theoretical Computer Science 410(6-7), 481–499 (2009)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space rendezvous in arbitrary graphs. Distributed Computing (25), 165–178 (2012)Google Scholar
  16. 16.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Transactions on Algorithms (8), article 37 (2012)Google Scholar
  17. 17.
    Dereniowski, D., Klasing, R., Kosowski, A., Kuszner, Ł.: Rendezvous of heterogeneous mobile agents in edge-weighted networks. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 311–326. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theoretical Computer Science (399), 141–156 (2008)Google Scholar
  19. 19.
    An, H.-C., Krizanc, D., Rajsbaum, S.: Mobile Agent Rendezvous: A Survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Lin, Z., Liu, H., Chu, X., Leung, Y.-W.: Jump-stay based channel-hopping algorithm with guaranteed rendezvous for cognitive radio networks. In: Proc. INFOCOM, pp. 2444–2452 (2011)Google Scholar
  21. 21.
    Miller, A., Pelc, A.: Time Versus Cost Tradeoffs for Deterministic Rendezvous in Networks. In: Proc. PODC, pp. 282–290 (2014)Google Scholar
  22. 22.
    Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Networks (59), 331–347 (2012)Google Scholar
  23. 23.
    Schelling, T.: The Strategy of Conflict. Harvard Univ. Press, Cambridge (1960)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ashley Farrugia
    • 1
  • Leszek Gąsieniec
    • 1
  • Łukasz Kuszner
    • 2
  • Eduardo Pacheco
    • 3
  1. 1.Department of Computer ScienceUniversity of LiverpoolUK
  2. 2.Department of Algorithms & System ModelingGdańsk University of TechnologyPoland
  3. 3.School of Computer ScienceCarleton UniversityCanada

Personalised recommendations