Local Routing in Convex Subdivisions

  • Prosenjit Bose
  • Stephane Durocher
  • Debajyoti Mondal
  • Maxime Peabody
  • Matthew Skala
  • Mohammad Abdul Wahid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8939)


In various wireless networking settings, node locations determine a network’s topology, allowing the network to be modelled by a geometric graph drawn in the plane. Without any additional information, local geometric routing algorithms can guarantee delivery to the target node only in restricted classes of geometric graphs, such as triangulations. In order to guarantee delivery on more general classes of geometric graphs (e.g., convex subdivisions or planar subdivisions), previous local geometric routing algorithms required Θ(logn) state bits to be stored and passed with the message. We present the first local geometric routing algorithm using only one state bit to guarantee delivery on convex subdivisions and the first local geometric memoryless routing algorithm that guarantees delivery on edge-augmented monotone subdivisions (including all convex subdivisions) when the algorithm has knowledge of the incoming port (the preceding node on the route).


Span Tree Source Node Target Node Geometric Graph Left Neighbour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Berg, M., van Kreveld, M., van Oostrum, R., Overmars, M.: Simple traversal of a subdivision without extra storage. Int. J. Geog. Inf. Sci. 11(4), 359–373 (1997)CrossRefGoogle Scholar
  2. 2.
    Bose, P., Brodnik, A., Carlsson, S., Demaine, E.D., Fleischer, R., López-Ortiz, A., Morin, P., Munro, I.: Online routing in convex subdivisions. Int. J. Comp. Geom. & Appl. 12(4), 283–295 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bose, P., Carmi, P., Durocher, S.: Bounding the locality of distributed routing algorithms. Dist. Comp. 26(1), 39–58 (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bose, P., Morin, P.: An improved algorithm for subdivision traversal without extra storage. Int. J. Comp. Geom. & Appl. 12(4), 297–308 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Comp. Sci. 324, 273–288 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comp. 33(4), 937–951 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Net. 7(6), 609–616 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Braverman, M.: On ad hoc routing with guaranteed delivery. In: Proc. ACM PODC, vol. 27, p. 418 (2008)Google Scholar
  9. 9.
    Chavez, E., Dobrev, S., Kranakis, E., Opatrny, J., Stacho, L., Urrutia, J.: Traversal of a quasi-planar subdivision without using mark bits. J. Interconn. Net. 5(4), 395–408 (2004)CrossRefGoogle Scholar
  10. 10.
    Chen, D., Devroye, L., Dujmović, V., Morin, P.: Memoryless routing in convex subdivisions: Random walks are optimal. Comp. Geom.: Theory & Appl. 45(4), 178–185 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Durocher, S., Kirkpatrick, D., Narayanan, L.: On routing with guaranteed delivery in three-dimensional ad hoc wireless networks. Wireless Net. 16, 227–235 (2010)CrossRefGoogle Scholar
  12. 12.
    Finn, G.G.: Routing and addressing problems in large metropolitan-scale internetworks. Technical Report ISI/RR-87-180, Information Sciences Institute (1987)Google Scholar
  13. 13.
    Frey, H., Ruehrup, S., Stojmenovic, I.: Routing in wireless sensor networks. In: Misra, S., Woungag, I., Misra, S. (eds.) Guide to Wireless Ad Hoc Networks, ch.4, pp. 81–111. Springer (2009)Google Scholar
  14. 14.
    Guan, X.: Face routing in wireless ad-hoc networks. PhD thesis, Univ. Toronto (2009)Google Scholar
  15. 15.
    Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. CCCG, vol. 11, pp. 51–54 (1999)Google Scholar
  16. 16.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. In: Proc. ACM DIALM-POMC, pp. 69–78 (2003)Google Scholar
  17. 17.
    Morin, P.: Online routing in geometric graphs. PhD thesis, Carleton Univ. (2001)Google Scholar
  18. 18.
    Urrutia, J.: Handbook wireless net. & mob. comp. In: Stojmenovic, I. (ed.) Routing with Guaranteed Delivery in Geometric and Wireless Networks, pp. 393–406. John Wiley & Sons, Inc. (2002)Google Scholar
  19. 19.
    Wahid, M.A.: Local geometric routing algorithms for edge-augmented planar graphs. Master’s thesis, Univ. Manitoba (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Prosenjit Bose
    • 1
  • Stephane Durocher
    • 2
  • Debajyoti Mondal
    • 2
  • Maxime Peabody
    • 1
  • Matthew Skala
    • 1
  • Mohammad Abdul Wahid
    • 3
  1. 1.Carleton UniversityOttawaCanada
  2. 2.University of ManitobaWinnipegCanada
  3. 3.Bits in GlassCalgaryCanada

Personalised recommendations