Interference Minimization in Asymmetric Sensor Networks

  • Yves Brise
  • Kevin Buchin
  • Dustin Eversmann
  • Michael Hoffmann
  • Wolfgang Mulzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8847)


A fundamental problem in wireless sensor networks is to connect a given set of sensors while minimizing the receiver interference. This is modeled as follows: each sensor node corresponds to a point in \({\mathbb R}^d\) and each transmission range corresponds to a ball. The receiver interference of a sensor node is defined as the number of transmission ranges it lies in. Our goal is to choose transmission radii that minimize the maximum interference while maintaining a strongly connected asymmetric communication graph.

For the two-dimensional case, we show that it is NP-complete to decide whether one can achieve a receiver interference of at most \(5\). In the one-dimensional case, we prove that there are optimal solutions with nontrivial structural properties. These properties can be exploited to obtain an exact algorithm that runs in quasi-polynomial time. This generalizes a result by Tan et al. to the asymmetric case.


Sensor Node Wireless Sensor Network Transmission Range Hamiltonian Path Satellite Station 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Maike Buchin, Tobias Christ, Martin Jaggi, Matias Korman, Marek Sulovský, and Kevin Verbeek for fruitful discussions.


  1. 1.
    Bilò, D., Proietti, G.: On the complexity of minimizing interference in ad-hoc and sensor networks. Theor. Comput. Sci. 402(1), 43–55 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Buchin, K.: Minimizing the maximum interference is hard (2008). arXiv:0802.2134
  3. 3.
    Burkhart, M., von Rickenbach, P., Wattenhofer, R., Zollinger, A.: Does topology control reduce interference? In: Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 9–19 (2004)Google Scholar
  4. 4.
    Fussen, M., Wattenhofer, R., Zollinger, A.: On interference reduction in sensor networks. Technical report 453, ETH Zürich, Department of Computer Science (2004)Google Scholar
  5. 5.
    Halldórsson, M.M., Tokuyama, T.: Minimizing interference of a wireless ad-hoc network in a plane. Theor. Comput. Sci. 402(1), 29–42 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Johansson, T., Carr-Motyčková, L.: Reducing interference in ad hoc networks through topology control. In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 17–23 (2005)Google Scholar
  7. 7.
    Korman, M.: Minimizing interference in ad hoc networks with bounded communication radius. Inf. Process. Lett. 112(19), 748–752 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Meyer auf der Heide, F., Schindelhauer, C., Volbert, K., Grünewald, M.: Congestion, dilation, and energy in radio networks. Theory Comput. Syst. 37(3), 343–370 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Moscibroda, T., Wattenhofer, R.: Minimizing interference in ad hoc and sensor networks. In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 24–33 (2005)Google Scholar
  10. 10.
    Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the traveling salesman problem. J. Algorithms 5(2), 231–246 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    von Rickenbach, P., Schmid, S., Wattenhofer, R., Zollinger, A.: A robust interference model for wireless ad-hoc networks. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS), p. 239 (2005)Google Scholar
  12. 12.
    von Rickenbach, P., Wattenhofer, R., Zollinger, A.: Algorithmic models of interference in wireless ad hoc and sensor networks. IEEE/ACM Trans. Netw. 17(1), 172–185 (2009)CrossRefGoogle Scholar
  13. 13.
    Tan, H., Lou, T., Wang, Y., Hua, Q.-S., Lau, F.: Exact algorithms to minimize interference in wireless sensor networks. Theor. Comput. Sci. 412(50), 6913–6925 (2011)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yves Brise
    • 1
  • Kevin Buchin
    • 2
  • Dustin Eversmann
    • 3
  • Michael Hoffmann
    • 1
  • Wolfgang Mulzer
    • 3
  1. 1.ETH ZürichZurichSwitzerland
  2. 2.TU EindhovenEindhovenThe Netherlands
  3. 3.FU BerlinBerlinGermany

Personalised recommendations