Multi-Robot Foremost Coverage of Time-Varying Graphs

  • Eric Aaron
  • Danny Krizanc
  • Elliot Meyerson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8847)


In this paper we demonstrate the application of time-varying graphs (TVGs) for modeling and analyzing multi-robot foremost coverage in dynamic environments. In particular, we consider the multi-robot, multi-depot Dynamic Map Visitation Problem (DMVP), in which a team of robots must visit a collection of critical locations as quickly as possible, in an environment that may change rapidly and unpredictably during navigation. We analyze DMVP in the context of the \(\mathcal {R} \supset \mathcal {B} \supset \mathcal {P}\) TVG hierarchy. We present exact offline algorithms for \(k\) robots on edge-recurrent TVGs (\(\mathcal {R}\)) over a range of topologies motivated by border coverage: an \(O(Tn)\) algorithm on a path and an \(O(T\frac{n^2}{k})\) algorithm on a cycle (where \(T\) is a time bound that is linear in the input size), as well as polynomial and fixed parameter tractable solutions for more general notions of border coverage. We also present algorithms for the case of two robots on a tree (and outline generalizations to \(k\) robots), including an \(O(n^5)\) exact algorithm for the case of edge-periodic TVGs (\(\mathcal {P}\)) with period 2, and a tight poly-time approximation for time-bounded edge-recurrent TVGs (\(\mathcal {B}\)). Finally, we present a linear-time \(\frac{12 \varDelta }{5}\)-approximation for two robots on general graphs in \(\mathcal {B}\) with edge-recurrence bound \(\varDelta \).


  1. 1.
    Aaron, E., Kranakis, E., Krizanc, D.: On the complexity of the multi-robot, multi-depot map visitation problem. In: IEEE MASS, pp. 795–800 (2011)Google Scholar
  2. 2.
    Aaron, E., Krizanc, D., Meyerson, E.: DMVP: Foremost waypoint coverage of time-varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 29–41. Springer, Heidelberg (2014). CrossRefGoogle Scholar
  3. 3.
    Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. Distr. Comp. 24(1), 31–44 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. OMEGA 34(3), 209–219 (2006)CrossRefGoogle Scholar
  5. 5.
    Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In: Pierre, S., Barbeau, M., An, H.-C. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. IJ Found. Comp. Sci. 14(02), 267–285 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations in time-varying graphs: broadcasting under unstructured mobility. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 111–124. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPED 27(5), 387–408 (2012)Google Scholar
  9. 9.
    Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (Cover Time of a Simple Random Walk on Evolving Graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Choset, H.: Coverage for robotics - a survey of recent results. Ann. Math. Artif. Intell. 31, 113–126 (2001)CrossRefGoogle Scholar
  11. 11.
    Correll, N., Rutishauser, S., Martinoli, A.: Comparing coordination schemes for miniature robotic swarms: a case study in boundary coverage of regular structures. In: Khatib, O., Kumar, V., Rus, D. (eds.) Experimental Robotics. STAR, vol. 39, pp. 471–480. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Dynia, M., Kutyłowski, J., der Heide, F.M., Schindelhauer, C.: Smart robot teams exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 327–338. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Easton, K., Burdick, J.: A coverage algorithm for multi-robot boundary inspection. In: Proceedings of ICRA, pp. 727–734 (2005)Google Scholar
  15. 15.
    Fakcharoenphol, J., Harrelson, C., Rao, S.: The \(k\)-traveling repairman problem. ACM Trans. Algorithms 3(4) (2007).
  16. 16.
    Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  18. 18.
    Godard, E., Mazauric D.: Computing the dynamic diameter of non-deterministic dynamic networks is hard. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.) ALGOSENSORS 2014. LNCS, vol. 8847, pp. 88–102. Springer, Heidelberg (2015)Google Scholar
  19. 19.
    Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Ilcinkas, D., Wade, A.M.: Exploration of the T-Interval-Connected Dynamic Graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 13–23. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: STOC, pp. 513–522 (2010)Google Scholar
  22. 22.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42(1), 82–96 (2011)CrossRefGoogle Scholar
  23. 23.
    Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. In: ACM MobiCom, pp. 284–298 (2005)Google Scholar
  24. 24.
    Mans, B., Mathieson, L.: On the treewidth of dynamic graphs. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 349–360. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 553–564. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  26. 26.
    Nagamochi, H., Okada, K.: A faster 2-approximation algorithm for the minmax p-traveling salesmen problem on a tree. Discrete Applied Math. 140(1-3), 103–114 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Xu, L., Xu, Z., Xu, D.: Exact and approximation algorithms for the minmax k-traveling salesmen problem on a tree. EJOR 227, 284–292 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Computer Science DepartmentVassar CollegePoughkeepsieUSA
  2. 2.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA

Personalised recommendations