Predictability of a Physically Based Model for Rainfall-induced Shallow Landslides: Model Development and Case Studies

  • Yang Hong
  • Xiaogang He
  • Amy Cerato
  • Ke Zhang
  • Zhen Hong
  • Zonghu Liao
Part of the Springer Natural Hazards book series (SPRINGERNAT)


A cost-effective physical model (SLope-Infiltration-distributed Equilibrium—SLIDE) has been developed to identify the spatial and temporal occurrences of rainfall-induced landslides, employing a range of remotely sensed and in situ data. The main feature of SLIDE is that it takes into account of some simplified hypotheses on water infiltration and defines a direct relationship between the factor of safety and the rainfall depth on an infinite slope model. This prototype has been applied to two case studies in Indonesia and Honduras during heavy rainfall events brought by typhoon and hurricane, respectively. Simulation results from SLIDE demonstrated good skills in predicting rainfall-induced shallow landslides by assimilating the most important dynamic triggering factor (i.e., rainfall) quantitatively. The model’s prediction performance also suggested that SLIDE could serve as a potential tool for the future landslide early-warning system. Despite positive model performance, the SLIDE model is limited by several assumptions including using general parameter calibration rather than in situ tests and neglecting geotechnical information and some of the hydrological processes in deep soil layers. Advantages and limitations of this physically based model are also discussed with respect to future applications of landslide assessment and prediction over large scales.


Physically based models Prediction Rainfall-induced Shallow landslides SLIDE TRMM 



The authors of this chapter acknowledge the partial fund support from NASA, Oklahoma Department of Transportation, USA.


  1. Baum, R. L., Savage, W. Z., & Godt, J. W. (2002). TRIGRS—a fortran program for transient rainfall infiltration and grid-based regional slope stability analysis. United States Geological Survey Open File Report.Google Scholar
  2. Boebel, O., Kindermann, L., Klinck, H., Bornemann, H., Plotz, J., Steinhage, D., et al. (2006). Satellite remote sensing for global landslide monitoring. EOS Transactions, American Geophysical Union, 87(37), 357–358.Google Scholar
  3. Dai, E. C., Lee, C. F., & Nagi, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64, 65–87.CrossRefGoogle Scholar
  4. Dietrich, W. E., Reiss, R., Hsu, M. L., & Montgomery, D. R. (1995). A process based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Process, 9, 383–400.CrossRefGoogle Scholar
  5. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.CrossRefGoogle Scholar
  6. Godt, J. W., Baum, R. L., & Lu, N. (2009). Landsliding in partially saturated materials. Geophysical Research Letters 36, paper no. L02403.Google Scholar
  7. Harp, E. L., Hagaman, K. W., Held, M. D., & McKenna, J. P. (2002). Digital inventory of landslides and related deposits in Honduras Triggered by Hurricane Mitch. United States Geological Survey Open-File Report 02-61. Google Scholar
  8. He, X., Hong, Y., Yu, X., Cerato, A. B., Zhang, X., & Komac, M. (2014). Landslides susceptibility mapping in Oklahoma state using GIS-based weighted linear combination method. In: K. Sassa, et al. (Eds.), Landslide science for a safer geoenvironment (Vol. 2, pp. 371–377). Heidelberg: Springer.Google Scholar
  9. Hong, Y., Adler, R. F., & Huffman, G. (2006). Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophysical Research Letters 33, paper no. L22402.Google Scholar
  10. Hong, Y., Adler, R. F., & Huffman, G. (2007). Use of satellite remote sensing data in mapping of global shallow landslides susceptibility. Natural Hazards, 43(2), 245–256.CrossRefGoogle Scholar
  11. Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55.CrossRefGoogle Scholar
  12. Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897–1910.CrossRefGoogle Scholar
  13. Kirschbaum, D. B., Adler, R. F., Hong, Y., Hill, S., & Lerner-Lam, A. L. (2009a). A global landslide catalog for hazard applications: Method, results and limitations. Natural Hazards, 52(3), 561–575.CrossRefGoogle Scholar
  14. Kirschbaum, D. B., Adler, R. F., Hong, Y., & Lerner-Lam, A. L. (2009b). Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Natural Hazards and Earth System Science, 9, 673–686.CrossRefGoogle Scholar
  15. Kirschbaum, D. B., Adler, R. F., Hong, Y., Peters-Lidard, C., & Lerner-Lam, A. L. (2012). Advances in landslide hazard forecasting: Evaluation of a global and regional modeling approach. Environmental Earth Sciences, 66, 1683–1696.CrossRefGoogle Scholar
  16. Liao, Z., Hong, Y., Wang, J., Fukuoka, H., Sassa, K., Karnawati, D., et al. (2010). Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides, 7(3), 317–324.CrossRefGoogle Scholar
  17. Liao, Z., Hong, Y., Kirschbaum, D., & Liu, C. (2011). Assessment of shallow landslides from Hurricane Mitch in central America using a physically based model. Environmental Earth Sciences, 66(6), 1697–1705.CrossRefGoogle Scholar
  18. Lu, N., & Godt, J. W. (2008). Infinite slope stability under unsaturated seepage conditions. Water Resources Research 44, paper no. W11404.Google Scholar
  19. Montrasio, L., & Valentino, R. (2008). A model for triggering mechanisms of shallow landslides. Natural Hazards and Earth System Science, 8, 1149–1159.CrossRefGoogle Scholar
  20. Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., & Jaedicke, C. (2006). Global landslide and avalanche hotspots. Landslides, 3, 159–173.CrossRefGoogle Scholar
  21. Sidle, R. C., & Ochiai, H. (2006). Landslides: Processes, prediction, and land use. In: Proceedings of AGU Conference 2006, Washington DC.Google Scholar
  22. Sorbino, G., Sica, C., & Cascini, L. (2010). Susceptibility analysis of shallow landslides source areas using physically based models. Natural Hazards, 53, 313–332.CrossRefGoogle Scholar
  23. Taylor, D. W. (1948). Fundamentals of soil mechanics. New York: Wiley.Google Scholar
  24. Wang, J., Hong, Y., Li, L., Gourley, J., Khan, S., Yilmaz, K., et al. (2011). The coupled routing and excess storage (CREST) distributed hydrological model. Hydrological Sciences Journal, 56(1), 84–98.CrossRefGoogle Scholar
  25. Wardani, S. P. R., & Kodoatie, R. J. (2008). Disaster management in Central Java Province, Indonesia. In: H. Liu & A. Deng, J. Chu (Eds.), Geotechnical engineering for disaster mitigation and rehabilitation (pp. 254–259). Heidelberg: Springer.Google Scholar
  26. Wu, W., & Sidle, R. C. (1995). A distributed slope stability model for steep forested basins. Water Resources Research, 31, 2097–2110.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yang Hong
    • 1
    • 2
  • Xiaogang He
    • 1
  • Amy Cerato
    • 1
  • Ke Zhang
    • 3
  • Zhen Hong
    • 1
  • Zonghu Liao
    • 1
  1. 1.Department of Civil Engineering and Environmental Science, and Advanced Radar Research CenterThe University of OklahomaNormanUSA
  2. 2.National Weather Center ARRC Suite 4610NormanUSA
  3. 3.Cooperative Institute for Mesoscale Meteorological StudiesThe University of OklahomaNormanUSA

Personalised recommendations