Modeling and Simulation of Network Aspects for Distributed Cyber-Physical Energy Systems

  • Ilge AkkayaEmail author
  • Yan Liu
  • Edward A. Lee
Part of the Power Systems book series (POWSYS)


Electric power grids are presently being integrated with sensors that provide measurements at high rates and resolution. The abundance of sensor measurements, as well as the added complexity of applications trigger a demand for cyber-physical system (CPS) modeling and simulation for evaluating the characteristics of appropriate network fabrics, timing profiles and distributed application workflow of power applications. Although simulation aids in the pre-deployment decision making process, system models for complex CPS can quickly become impractical for the purposes of specialized evaluation of design aspects. Existing modeling techniques are inadequate for capturing the heterogeneous nature of CPS and tend to inherently couple orthogonal design concerns. To address this issue, we present an aspect-oriented modeling and simulation paradigm. The aspectoriented approach provides a separation between functional models and crosscutting modeling concerns such as network topology, latency profiles, security aspects, and quality of service (QoS) requirements. As a case study, we consider a three-area smart grid topology and demonstrate the aspect-oriented approach to modeling network and middleware behavior for a distributed state estimation application. We also explore how aspects leverage scalable co-simulation, fault modeling, and middleware-in-the loop simulation for complex smart grid models.


Smart Grid Power Grid Phasor Measurement Unit Common Information Model Smart Grid Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akkaya, I., Liu, Y., Gorton, I.: Modeling and analysis of middleware design for streaming power grid applications. In: Proceedings of the Industrial Track of the 13th ACM/IFIP/USENIX International Middleware Conference, MIDDLEWARE 2012, pp. 1:1–1:6. ACM, New York (2012),, doi:10.1145/2405146.2405147Google Scholar
  2. 2.
    Akkaya, I., Liu, Y., Lee, E.A., Gorton, I.: Modeling uncertainty for middleware-based streaming power grid applications. In: Proceedings of the 8th Workshop on Middleware for Next Generation Internet Computing, MW4NextGen 2013, pp. 4:1–4:6. ACM, New York (2013),, doi:10.1145/2541608.2541612CrossRefGoogle Scholar
  3. 3.
    Anderson, K., Du, J., Narayan, A., Gamal, A.E.: Gridspice: A distributed simulation platform for the smart grid. In: 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), pp. 1–5 (2013), doi:10.1109/MSCPES.2013.6623311Google Scholar
  4. 4.
    Andrén, F., Stifter, M., Strasser, T.: Towards a semantic driven framework for smart grid applications: Model-driven development using CIM, IEC 61850 and IEC 61499. Informatik-Spektrum 36(1), 58–68 (2013),, doi:10.1007/s00287-012-0663-yCrossRefGoogle Scholar
  5. 5.
    Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A.: Metropolis: An integrated electronic system design environment. Computer 36(4), 45–52 (2003)CrossRefGoogle Scholar
  6. 6.
    Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter, M.: Determinate composition of fmus for co-simulation. In: Proceedings of the Eleventh ACM International Conference on Embedded Software, p. 2. IEEE Press (2013)Google Scholar
  7. 7.
    Cardoso, J., Derler, P., Eidson, J.C., Lee, E.A., Matic, S., Zhao, Y., Zou, J.: Modeling timed systems. In: Ptolemaeus, C. (ed.) System Design, Modeling, and Simulation using Ptolemy II, pp. 355–393., Berkeley (2014), Google Scholar
  8. 8.
    Chassin, D., Schneider, K., Gerkensmeyer, C.: GridLAB-D: An open-source power systems modeling and simulation environment. In: IEEE/PES Transmission and Distribution Conference and Exposition, pp. 1–5 (2008), doi:10.1109/TDC.2008.4517260Google Scholar
  9. 9.
    Chen, Y., Huang, Z., Liu, Y., Rice, M., Jin, S.: Computational challenges for power system operation. In: 2012 45th Hawaii International Conference on System Science (HICSS), pp. 2141–2150 (2012), doi:10.1109/HICSS.2012.171Google Scholar
  10. 10.
    Chen, Y., Huang, Z., Liu, Y., Rice, M.J., Jin, S.: Computational challenges for power system operation. In: Proceedings of the 2012 45th Hawaii International Conference on System Sciences, pp. 2141–2150. IEEE Computer Society (2012)Google Scholar
  11. 11.
    Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proceedings of the IEEE 100(1), 13–28 (2012), doi:10.1109/JPROC.2011.2160929CrossRefGoogle Scholar
  12. 12.
    Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity-the Ptolemy approach. Proceedings of the IEEE 91(1), 127–144 (2003)CrossRefGoogle Scholar
  13. 13.
    Elrad, T., Aldawud, O., Bader, A.: Aspect-oriented modeling: Bridging the gap between implementation and design. In: Batory, D., Blum, A., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp. 189–201. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Gibson, T., Kulkarni, A., Kleese-van-Dam, K., Critchlow, T.: The feasibility of moving pmu data in the future power grid. In: CIGRE Canada Conference on Power Systems: Promoting Better Interconnected Power Systems, Hallifax, NS, Canada (2011)Google Scholar
  15. 15.
    Godfrey, T., Mullen, S., Dugan, R.C., Rodine, C., Griffith, D.W., Golmie, N.: Modeling smart grid applications with co-simulation. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 291–296. IEEE (2010)Google Scholar
  16. 16.
    Gomez-Exposito, A., Abur, A., de la Villa Jaen, A., Gómez-Quiles, C.: A multilevel state estimation paradigm for smart grids. Proceedings of the IEEE 99(6), 952–976 (2011)CrossRefGoogle Scholar
  17. 17.
    Hasan, R., Bobba, R., Khurana, H.: Analyzing naspinet data flows. In: IEEE/PES Power Systems Conference and Exposition, PSCE 2009, pp. 1–6. IEEE (2009)Google Scholar
  18. 18.
    Hazra, J., Das, K., Seetharam, D.P., Singhee, A.: Stream computing based synchrophasor application for power grids. In: Proceedings of the First International Workshop on High Performance Computing, Networking and Analytics for the Power Grid, HiPCNA-PG 2011, pp. 43–50. ACM, New York (2011),, doi:10.1145/2096123.2096134Google Scholar
  19. 19.
    Jiang, W., Vittal, V., Heydt, G.: A Distributed State Estimator Utilizing Synchronized Phasor Measurements. IEEE Transactions on Power Systems 22(2), 563–571 (2007), doi:10.1109/TPWRS.2007.894859CrossRefGoogle Scholar
  20. 20.
    Khaitan, S.K., McCalley, J.D.: Cyber physical system approach for design of power grids: A survey. In: 2013 IEEE Power and Energy Society General Meeting (PES), pp. 1–5 (2013)Google Scholar
  21. 21.
    Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: A survey. IEEE Systems Journal PP(99), 1–16 (2014), doi:10.1109/JSYST.2014.2322503CrossRefGoogle Scholar
  22. 22.
    Korres, G.: A distributed multiarea state estimation. IEEE Transactions on Power Systems 26(1), 73–84 (2011)CrossRefGoogle Scholar
  23. 23.
    Koziolek, A., Happe, L., Avritzer, A., Suresh, S.: A common analysis framework for smart distribution networks applied to survivability analysis of distribution automation. In: 2012 International Workshop on Software Engineering for the Smart Grid (SE4SG), pp. 23–29 (2012), doi:10.1109/SE4SG.2012.6225713Google Scholar
  24. 24.
    Krechetov, I., Tekinerdogan, B., Garcia, A., Chavez, C., Kulesza, U.: Towards an integrated aspect-oriented modeling approach for software architecture design. In: 8th Workshop on Aspect-Oriented Modelling (AOM 2006), AOSD, vol. 6. Citeseer (2006)Google Scholar
  25. 25.
    Lee, E.A.: Cyber physical systems: Design challenges. In: International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), pp. 363–369. IEEE, Orlando (2008), Google Scholar
  26. 26.
    Lin, H., Sambamoorthy, S., Shukla, S., Thorp, J., Mili, L.: Power system and communication network co-simulation for smart grid applications. In: 2011 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–6 (2011), doi:10.1109/ISGT.2011.5759166Google Scholar
  27. 27.
    Liu, J., Liu, X., Lee, E.A.: Modeling distributed hybrid systems in Ptolemy II. In: Proceedings of the 2001 American Control Conference, pp. 4984–4985. IEEE (2001)Google Scholar
  28. 28.
    Matic, S., Akkaya, I., Zimmer, M., Eidson, J.C., Lee, E.A.: PTIDES model on a distributed testbed emulating smart grid real-time applications. In: Innovative Smart Grid Technologies (ISGT-EUROPE). IEEE, Manchester (2011),
  29. 29.
    Ptolemaeus, C. (ed.): System Design, Modeling and Simulation using Ptolemy II (2014),
  30. 30.
    Tomsovic, K., Bakken, D.E., Venkatasubramanian, V., Bose, A.: Designing the next generation of real-time control, communication, and computations for large power systems. Proceedings of the IEEE 93(5), 965–979 (2005)CrossRefGoogle Scholar
  31. 31.
    Wetter, M.: Co-simulation of building energy and control systems with the building controls virtual test bed. Journal of Building Performance Simulation 4(3), 185–203 (2011)CrossRefGoogle Scholar
  32. 32.
    Zimmerman, R., Murillo-Sánchez, C., Thomas, R.: Matpower: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Transactions on Power Systems 26(1), 12–19 (2011), doi:10.1109/TPWRS.2010.2051168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Concordia UniversityMontrealCanada

Personalised recommendations