Advertisement

Chinese Microblog Entity Linking System Combining Wikipedia and Search Engine Retrieval Results

  • Zeyu Meng
  • Dong Yu
  • Endong Xun
Part of the Communications in Computer and Information Science book series (CCIS, volume 496)

Abstract

Microblog has provided a convenient and instant platform for information publication and acquisition. Microblog’s short, noisy, real-time features make Chinese Microblog entity linking task a new challenge. In this paper, we investigate the linking approach and introduce the implementation of a Chinese Microblog Entity Linking (CMEL) System. In particular, we first build synonym dictionary and process the special identifier. Then we generate candidate set combining Wikipedia and search engine retrieval results. Finally, we adopt improved VSM to get textual similarity for entity disambiguation. The accuracy of CMEL system is 84.35%, which ranks the second place in NLPCC 2014 Evaluation Entity Linking Task.

Keywords

Retrieval Result Word Segmentation Vote Mechanism Preprocess Module Microblog Post 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 708–716 (2007)Google Scholar
  2. 2.
    Mihalcea, R., Csomai, A.: Wikify! Linking Documents to Encyclopedic Knowledge. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 233–242 (2007)Google Scholar
  3. 3.
    McNamee, P., Dredze, M., Gerber, A., Garera, N., Finin, T., Mayfield, J., Piatko, C., Rao, D., Yarowsky, D., Dreyer, M.: HLTCOE Approaches to Knowledge Base Population at TAC 2009. In: Proceedings of Text Analysis Conference (TAC) (2009)Google Scholar
  4. 4.
    Zheng, Z., Li, F., Huang, M., Zhu, X.: Learningto Link Entities with Knowledge Base. In: The Proceedings of the Annual Conference of the North American Chapter of the ACL, pp. 483–491 (2010)Google Scholar
  5. 5.
    Zhang, W., Su, J., Tan, C.L., Wang, W.T.: Entity Linking Leveraging Automatically Generated Annotation. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1290–1298 (2010)Google Scholar
  6. 6.
    Zhou, Y., Nie, L., Rouhani-Kalleh, O., Vasile, F., Gaffney, S.: Resolving Surface Forms to Wikipedia Topics. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1335–1343 (2010)Google Scholar
  7. 7.
    Han, X.P., Sun, L.: A Generative Entity-Mention Model for Linking Entities with Knowledge Base. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 945–954 (2011)Google Scholar
  8. 8.
    Milne, D., Witten, I.H.: Learning to Link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)Google Scholar
  9. 9.
    Chen, Z., Ji, H.: Collaborative Ranking: A Case Study on Entity Linking. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 771–781 (2011)Google Scholar
  10. 10.
    Guo, Y., Qin, B., Liu, T., Li, S.: Microblog Entity Linking by Leveraging Extra Posts. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 863–868 (2013)Google Scholar
  11. 11.
    Miao, Q., Lu, H., Zhang, S., Meng, Y.: Simple Yet Effective Method for Entity Linking in Microblog-Genre Text. In: Zhou, G., Li, J., Zhao, D., Feng, Y. (eds.) NLPCC 2013. CCIS, vol. 400, pp. 440–447. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Zhu, M., Jia, Z., Zuo, L., Wu, A., et al.: Research on Entity Linking of Chinese Micro Blog. Journal of Peking University (Natural Science Edition) 01, 73–78 (2014) (in Chinese) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zeyu Meng
    • 1
  • Dong Yu
    • 1
  • Endong Xun
    • 1
  1. 1.Inter. R&D center for Chinese EducationBeijing Language and Culture UniversityBeijingChina

Personalised recommendations